4,141 research outputs found

    List Processing in Real Time on a Serial Computer

    Get PDF
    Key Words and Phrases: real-time, compacting, garbage collection, list processing, virtual memory, file or database management, storage management, storage allocation, LISP, CDR-coding, reference counting. CR Categories: 3.50, 3.60, 373, 3.80, 4.13, 24.32, 433, 4.35, 4.49 This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-75-C-0522.A real-time list processing system is one in which the time required by each elementary list operation (CONS, CAR, CDR, RPLACA, RPLACD, EQ, and ATOM in LISP) is bounded by a (small) constant. Classical list processing systems such as LISP do not have this property because a call to CONS may invoke the garbage collector which requires time proportional to the number of accessible cells to finish. The space requirement of a classical LISP system with N accessible cells under equilibrium conditions is (1.5+ÎŒ)N or (1+ÎŒ)N, depending upon whether a stack is required for the garbage collector, where ÎŒ>0 is typically less than 2. A list processing system is presented which: 1) is real-time--i.e. T(CONS) is bounded by a constant independent of the number of cells in use; 2) requires space (2+2ÎŒ)N, i.e. not more than twice that of a classical system; 3) runs on a serial computer without a time-sharing clock; 4) handles directed cycles in the data structures; 5) is fast--the average time for each operation is about the same as with normal garbage collection; 6) compacts--minimizes the working set; 7) keeps the free pool in one contiguous block--objects of nonuniform size pose no problem; 8) uses one phase incremental collection--no separate mark, sweep, relocate phases; 9) requires no garbage collector stack; 10) requires no "mark bits", per se; 11) is simple--suitable for microcoded implementation. Extensions of the system to handle a user program stack, compact list representation ("CDR-coding"), arrays of non-uniform size, and hash linking are discussed. CDR-coding is shown to reduce memory requirements for N LISP cells to ≈(I+ÎŒ)N. Our system is also compared with another approach to the real-time storage management problem, reference counting, and reference counting is shown to be neither competitive with our system when speed of allocation is critical, nor compatible, in the sense that a system with both forms of garbage collection is worse than our pure one.MIT Artificial Intelligence Laboratory Department of Defense Advanced Research Projects Agenc

    "Are we working (too) comfortably?”:Understanding the nature of and factors associated with sedentary behaviour when working in the home environment

    Get PDF
    Home working has increased due to COVID-19, but little is known about how this change has impacted the health risk behaviour of elevated sedentary time. The aim of this cross-sectional exploratory study was to assess occupational sitting behaviour when working at home, and use the Capability Opportunity Motivation-Behaviour (COM-B) model to identify influences on this behaviour. University staff (n = 267; 69% female; 92% white) who were predominantly working from home completed a questionnaire to assess sitting time, sitting breaks, demographic and occupational characteristics, and a 7-item COM-B questionnaire and open-ended questions to assess influences on time spent sitting whilst working from home. Data were analysed descriptively, a repeated measures ANOVA was used to determine differences in the COM-B items, and binary logistic regression was used to examine predictors of sitting time. Staff spent on average 89.5% (SD = 17.1) of their time sitting whilst working at home, and took an average of 1.36 (1.38) sitting breaks per hour. There were significant and meaningful differences in the influence of the COM factors on ability and willingness to reduce sitting behaviour (p < .0001; η(p)(2) = .38), and the open-ended responses added further context. The included variables accounted for 20.7% of variance in sitting behaviour, with age, sitting breaks, motivation-automatic, and opportunity-physical contributing significantly. Working from home leads to elevated levels of sitting, and the COM-B provides a useful model to identify key influences on ability and willingness to reduce sitting. Strategies incorporating regular breaks, habit formation/reversal, and restructuring the physical environment may be beneficial

    T-cell-derived miRNA-214 mediates perivascular fibrosis in hypertension

    Get PDF
    RATIONALE: Despite increasing understanding of the prognostic importance of vascular stiffening linked to perivascular fibrosis in hypertension, the molecular and cellular regulation of this process is poorly understood. OBJECTIVES: To study the functional role of microRNA-214 (miR-214) in the induction of perivascular fibrosis and endothelial dysfunction driving vascular stiffening. METHODS AND RESULTS: Out of 381 miRs screened in the perivascular tissues in response to Ang II (angiotensin II)-mediated hypertension, miR-214 showed the highest induction (8-fold, P=0.0001). MiR-214 induction was pronounced in perivascular and circulating T cells, but not in perivascular adipose tissue adipocytes. Global deletion of miR-214-/- prevented Ang II-induced periaortic fibrosis, Col1a1, Col3a1, Col5a1, and Tgfib1 expression, hydroxyproline accumulation, and vascular stiffening, without difference in blood pressure. Mechanistic studies revealed that miR-214-/- mice were protected against endothelial dysfunction, oxidative stress, and increased Nox2, all of which were induced by Ang II in WT mice. Ang II-induced recruitment of T cells into perivascular adipose tissue was abolished in miR-214-/- mice. Adoptive transfer of miR-214-/- T cells into RAG1-/- mice resulted in reduced perivascular fibrosis compared with the effect of WT T cells. Ang II nduced hypertension caused significant change in the expression of 1380 T cell genes in WT, but only 51 in miR-214-/-. T cell activation, proliferation and chemotaxis pathways were differentially affected. MiR-214-/- prevented Ang II-induction of profibrotic T cell cytokines (IL-17, TNF-a, IL-9, and IFN-y) and chemokine receptors (CCR1, CCR2, CCR4, CCR5, CCR6, and CXCR3). This manifested in reduced in vitro and in vivo T cell chemotaxis resulting in attenuation of profibrotic perivascular inflammation. Translationally, we show that miR-214 is increased in plasma of patients with hypertension and is directly correlated to pulse wave velocity as a measure of vascular stiffness. CONCLUSIONS: T-cell-derived miR-214 controls pathological perivascular fibrosis in hypertension mediated by T cell recruitment and local profibrotic cytokine release

    Who knows best? A Q methodology study to explore perspectives of professional stakeholders and community participants on health in low-income communities

    Get PDF
    Abstract Background Health inequalities in the UK have proved to be stubborn, and health gaps between best and worst-off are widening. While there is growing understanding of how the main causes of poor health are perceived among different stakeholders, similar insight is lacking regarding what solutions should be prioritised. Furthermore, we do not know the relationship between perceived causes and solutions to health inequalities, whether there is agreement between professional stakeholders and people living in low-income communities or agreement within these groups. Methods Q methodology was used to identify and describe the shared perspectives (‘subjectivities’) that exist on i) why health is worse in low-income communities (‘Causes’) and ii) the ways that health could be improved in these same communities (‘Solutions’). Purposively selected individuals (n = 53) from low-income communities (n = 25) and professional stakeholder groups (n = 28) ranked ordered sets of statements – 34 ‘Causes’ and 39 ‘Solutions’ – onto quasi-normal shaped grids according to their point of view. Factor analysis was used to identify shared points of view. ‘Causes’ and ‘Solutions’ were analysed independently, before examining correlations between perspectives on causes and perspectives on solutions. Results Analysis produced three factor solutions for both the ‘Causes’ and ‘Solutions’. Broadly summarised these accounts for ‘Causes’ are: i) ‘Unfair Society’, ii) ‘Dependent, workless and lazy’, iii) ‘Intergenerational hardships’ and for ‘Solutions’: i) ‘Empower communities’, ii) ‘Paternalism’, iii) ‘Redistribution’. No professionals defined (i.e. had a significant association with one factor only) the ‘Causes’ factor ‘Dependent, workless and lazy’ and the ‘Solutions’ factor ‘Paternalism’. No community participants defined the ‘Solutions’ factor ‘Redistribution’. The direction of correlations between the two sets of factor solutions – ‘Causes’ and ‘Solutions’ – appear to be intuitive, given the accounts identified. Conclusions Despite the plurality of views there was broad agreement across accounts about issues relating to money. This is important as it points a way forward for tackling health inequalities, highlighting areas for policy and future research to focus on

    Bose-Einstein-condensed systems in random potentials

    Full text link
    The properties of systems with Bose-Einstein condensate in external time-independent random potentials are investigated in the frame of a self-consistent stochastic mean-field approximation. General considerations are presented, which are valid for finite temperatures, arbitrary strengths of the interaction potential, and for arbitrarily strong disorder potentials. The special case of a spatially uncorrelated random field is then treated in more detail. It is shown that the system consists of three components, condensed particles, uncondensed particles and a glassy density fraction, but that the pure Bose glass phase with only a glassy density does not appear. The theory predicts a first-order phase transition for increasing disorder parameter, where the condensate fraction and the superfluid fraction simultaneously jump to zero. The influence of disorder on the ground-state energy, the stability conditions, the compressibility, the structure factor, and the sound velocity are analyzed. The uniform ideal condensed gas is shown to be always stochastically unstable, in the sense that an infinitesimally weak disorder destroys the Bose-Einstein condensate, returning the system to the normal state. But the uniform Bose-condensed system with finite repulsive interactions becomes stochastically stable and exists in a finite interval of the disorder parameter.Comment: Latex file, final published varian

    Methane release from gas hydrates in the Rock Garden of the Hikurangi margin, New Zealand

    Get PDF
    Dissolved methane and high resolution bathymetry surveys were conducted over the Rock Garden region of Ritchie Ridge, along the Hikurangi margin, eastern New Zealand. Multibeam bathymetry reveals two prominent, northeast trending ridges, parallel to subduction along the margin, that are steep sided and extensively slumped. Elevated concentrations of methane (up to 10 nM, 10× background) within the water column are associated with a slump structure at the southern end of Eastern Rock Garden. The anomalous methane concentrations were detected by a methane sensor (METS) attached to a conductivity‐temperature‐depth‐optical backscatter device (CTDO) and are associated with elevated light scattering and flare‐shaped backscatter signals revealed by the ship's echo sounder. Increased particulate matter in the water column, possibly related to the seepage and/or higher rates of erosion near slump structures, is considered to be the cause of the increased light scattering, rather than bubbles in the water column. Methane concentrations calculated from the METS are in good agreement with concentrations measured by gas chromatography in water samples collected at the same time. However, there is a c. 20 min (c. 900 m) delay in the METS signal reaching maximum CH4 concentrations. The maximum methane concentration occurs near the plateau of Eastern Rock Garden close to the edge of a slump, at 610 m below sea level (mbsl). This is close to the depth (c. 630 mbsl) where a bottom simulating reflector (BSR) pinches out at the seafloor. Fluctuating water temperatures observed in previous studies indicate that the stability zone for pure methane hydrate in the ocean varies between 630 and 710 mbsl. However, based on calculations of the geothermal gradients from BSRs, we suggest gas hydrate in the study area to be more stable than hydrate from pure methane in sea water, moving the phase boundary in the ocean upward. Small fractions of additional higher order hydrocarbon gases are the most likely cause for increased hydrate stability. Relatively high methane concentrations have been measured down to c. 1000 mbsl, most likely in response to sediment slumping caused by gas hydrate destabilisation of the sediments and/or marking seepage through the gas hydrate zone
    • 

    corecore