50,794 research outputs found

    Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    Get PDF
    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives

    Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    Get PDF
    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives

    Solid state remote power controllers for 120 VDC power systems

    Get PDF
    Solid state remote power controllers can be applied to any dc power system up to 120 Vdc and distribute power up to 3.6 kW per hour. Devices have demonstrated total electrical efficiencies of 98.5 percent to 99.0 percent at rated load currents

    The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation

    Get PDF
    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction

    An advanced brushless dc torque motor Quarterly report, 30 Sep. - 30 Dec. 1966

    Get PDF
    Design of torque motor controller, and operation of breadboard control circui

    A mathematical formulation for the cell-cycle model in somitogenesis: analysis, parameter constraints and numerical solutions

    Get PDF
    In this work we present an analysis, supported by numerical simulations, of the formulation of the cell-cycle model for somitogenesis proposed in Collier et al.(J. Theor. Biol. 207 (2000), 305–316). The analysis indicates that by introducing appropriate parameter constraints on model parameters the cell-cycle mechanism can indeed give rise to the periodic pattern of somites observed in normal embryos. The analysis also provides a greater understanding of the signalling process controlling somite formation and allows us to understand which parameters influence somite length

    Study of explosions in the NASA-MSC Vibration and Acoustic Test Facility /VATF/ Final report

    Get PDF
    Damage potential of titanium alloy pressure spheres relative to spacecraft vibration testin

    Plasma Diagnostics by Antenna Impedance Measurements

    Get PDF
    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described

    The impact of scatterometer wind data on global weather forecasting

    Get PDF
    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets
    • …
    corecore