2 research outputs found

    Modified F(R) Horava-Lifshitz gravity: a way to accelerating FRW cosmology

    Get PDF
    We propose a general approach for the construction of modified gravity which is invariant under foliation-preserving diffeomorphisms. Special attention is paid to the formulation of modified F(R)F(R) Ho\v{r}ava-Lifshitz gravity (FRHL), whose Hamiltonian structure is studied. It is demonstrated that the spatially-flat FRW equations of FRHL are consistent with the constraint equations. The analysis of de Sitter solutions for several versions of FRHL indicates that the unification of the early-time inflation with the late-time acceleration is possible. It is shown that a special choice of parameters for FRHL leads to the same spatially-flat FRW equations as in the case of traditional F(R)F(R)-gravity. Finally, an essentially most general modified Ho\v{r}ava-Lifshitz gravity is proposed, motivated by its fully diffeomorphism-invariant counterpart, with the restriction that the action does not contain derivatives higher than the second order with respect to the time coordinate.Comment: LaTeX 11 pages. v4: Some errors have been correcte

    Thin accretion disk signatures of slowly rotating black holes in Ho\v{r}ava gravity

    Get PDF
    In the present work, we consider the possibility of observationally testing Ho\v{r}ava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating Kehagias-Sfetsos geometry in Ho\v{r}ava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating Kehagias-Sfetsos solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Ho\v{r}ava gravity models by using astrophysical observations of the emission spectra from accretion disks.Comment: 12 pages, 15 figures. V2: 13 pages, clarifications and discussion added; version accepted for publication in Classical and Quantum Gravit
    corecore