6 research outputs found

    Acaricidal activity of five essential oils of Ocimum species on Rhipicephalus (Boophilus) microplus larvae.

    No full text
    International audienceThe aim of this study was to evaluate the acaricidal activity on the cattle tick Rhipicephalus (Boophilus) microplus of essential oils from three Ocimum species. Acaricidal activity of five essential oils extracted from Ocimum gratissimum L. (three samples), O. urticaefolium Roth, and O. canum Sims was evaluated on 14- to 21-day-old Rhipicephalus microplus tick larvae using larval packet test bioassay. These essential oils were analyzed by gas chromatography (GC) and gas chromatography–mass spectrometry (GC/MS) showing great variations of their chemical compositions according to the botanical species and even within the O. gratissimum species; the acaricidal activity of their main compounds was also evaluated. The essential oils of O. urticaefolium and O. gratissimum collected in Cameroon were the most efficient with respective LC50 values of 0.90 and 0.98 %. The two essential oils obtained from O. gratissimum collected in New Caledonia were partially active at a dilution of 5 % while the essential oil of O. canum collected in Cameroon showed no acaricidal activity. The chemical analysis shows five different profiles. Whereas the essential oils of O. urticaefolium from Cameroon and O. gratissimum from New Caledonia contain high amounts of eugenol (33.0 and 22.3–61.0 %, respectively), 1,8-cineole was the main component of the oil of an O. canum sample from Cameroon (70.2 %); the samples of O. gratissimum oils from New Caledonia are also characterized by their high content of (Z)-β-ocimene (17.1–49.8 %) while the essential oil of O. gratissimum collected in Cameroon is mainly constituted by two p-menthane derivatives: thymol (30.5 %) and γ-terpinene (33.0 %). Moreover, the essential oil of O. urticaefolium showed the presence of elemicin (18.1 %) as original compound. The tests achieved with the main compounds confirmed the acaricidal activity of eugenol and thymol with residual activity until 0.50 and 1 %, respectively, and revealed the acaricidal property of elemicin, which was the most efficient compound with 100 % of acaricidal activity at a dilution of 0.25 % and could be a valuable acaricide for the control of the cattle tick R. microplus

    Ethnobotanical survey of medicinal plants used as insects repellents in six malaria endemic localities of Cameroon

    No full text
    Abstract Background The combined efforts to combat outdoor/indoor transmission of malaria parasites are hampered by the emerging vector resistance in a wide variety of malaria-endemic settings of Africa and the rest of the world, stressing the need for alternative control measures. This study aimed at documenting insect’s repellent plant species used by indigenous populations of 6 localities of East, South, West and Centre regions of Cameroon. Methods Information was gathered through face-to-face interviews guided by a semi-structured questionnaire on the knowledge of medicinal plants with insect repellent properties. Results A total of 182 informants aged from 25 to 75 years were recruited by convenience from May to June 2015. The informants had general knowledge about insects’ repellent plants (78.6%). A total of 16 plant species were recorded as insects’ repellents with 50% being trees. The most cited plants were Canarium schweinfurthii (Burseraceae) (in four localities, 58/182), Elaeis guineensis (Arecaceae) (in three localities, 38/182), Chromolaena odorata (Compositae) (16/182) and Citrus limon (Rutaceae) (11/182) in two localities each. Among the repellent plant species recorded, 50% were reported to be burnt to produce in-house smokes, 31.2% were mashed and applied on the body, and 18.8% were hung in the houses. The leaf was the most commonly used plant part (52.9%), followed by the bark (17.6%). Conclusions This study has shown that rural populations of the 6 targeted localities possess indigenous knowledge on repellent plants that are otherwise cost-effective and better choice for repelling insects including malaria-transmitting mosquitoes. Meanwhile, such practices should be validated experimentally and promoted as sustainable malaria transmission control tools in the remotely located communities

    Additional file 1: of Ethnobotanical survey of medicinal plants used as insects repellents in six malaria endemic localities of Cameroon

    No full text
    Ethnobotanical survey of insect/mosquito repellent plants. Interview respondents were identified and further questioned face-to-face using a semi-structured questionnaire. Responses to all questions were recorded following a sequential guideline. (DOC 53 kb

    In Vivo Antiplasmodial Activity of Terminalia mantaly Stem Bark Aqueous Extract in Mice Infected by Plasmodium berghei

    No full text
    Background. Terminalia mantaly is used in Cameroon traditional medicine to treat malaria and related symptoms. However, its antiplasmodial efficacy is still to be established. Objectives. The present study is aimed at evaluating the in vitro and in vivo antiplasmodial activity and the oral acute toxicity of the Terminalia mantaly extracts. Materials and Methods. Extracts were prepared from leaves and stem bark of T. mantaly, by maceration in distilled water, methanol, ethanol, dichloromethane (DCM), and hexane. All extracts were initially screened in vitro against the chloroquine-resistant strain W2 of P. falciparum to confirm its in vitro activity, and the most potent one was assessed in malaria mouse model at three concentrations (100, 200, and 400 mg/kg/bw). Biochemical, hematological, and histological parameters were also determined. Results. Overall, 7 extracts showed in vitro antiplasmodial activity with IC50 ranging from 0.809 μg/mL to 5.886 μg/mL. The aqueous extract from the stem bark of T. mantaly (Tmsbw) was the most potent (IC50=0.809 μg/mL) and was further assessed for acute toxicity and efficacy in Plasmodium berghei-infected mice. Tmsbw was safe in mice with a median lethal dose (LD50) higher than 2000 mg/kg of body weight. It also exerted a good antimalarial efficacy in vivo with ED50 of 69.50 mg/kg and had no significant effect on biochemical, hematological, and histological parameters. Conclusion. The results suggest that the stem bark extract of T. mantaly possesses antimalarial activity

    Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon.

    Get PDF
    International audienceBackgroundCancer has become a global public health problem and the search for new control measures is urgent. Investigation of plant products such as essential oils from Monodora myristica, Xylopia aethiopica and Xylopia parviflora might lead to new anticancer therapy. In this study, we have investigated the antineoplastic activity of essential oils from fruits of these plants growing in Chad and Cameroon.MethodsThe essential oils obtained by hydrodistillation of fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora collected in Chad and Cameroon were analyzed by GCFID and GC-MS and investigated for their antiproliferative activity against the breast cancer cell line (MCF7).ResultsOverall, monoterpenes were mostly found in the six essential oils. Oils from X. aethiopica and X. parviflora from Chad and Cameroon mainly contain β-pinene at 24.6%, 28.2%, 35.7% and 32.9% respectively. Monodora myristica oils from both origins contain mainly α- phellandrene at 52.7% and 67.1% respectively. The plant origin did not significantly influence the chemical composition of oils. The six essential oils exerted cytotoxic activity against cancer (MCF-7) and normal cell lines (ARPE-19), with more pronounced effect on neoplastic cells in the majority of cases. The highest selectivity was obtained with the essential oils of X. parviflora from Chad and Cameroon (5.87 and 5.54) which were more cytotoxic against MCF-7 than against normal cell line (ARPE-19) with IC50 values of 0.155 μL/mL and 0.166 μL/mL respectively.ConclusionsEssential oils from fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora have shown acceptable antineoplastic potency, and might be investigated further in this regard
    corecore