4,047 research outputs found

    Different hierarchy of avalanches observed in the Bak-Sneppen evolution model

    Get PDF
    We introduce a new quantity, average fitness, into the Bak-Sneppen evolution model. Through the new quantity, a different hierarchy of avalanches is observed. The gap equation, in terms of the average fitness, is presented to describe the self-organization of the model. It is found that the critical value of the average fitness can be exactly obtained. Based on the simulations, two critical exponents, avalanche distribution and avalanche dimension, of the new avalanches are given.Comment: 5 pages, 3 figure

    A Self-Organized-Criticality model consistent with statistical properties of edge turbulence in a fusion plasma

    Full text link
    The statistical properties of the intermittent signal generated by a recent model for self-organized-criticality (SOC) are examined. A successful comparison is made with previously published results of the equivalent quantities measured in the electrostatic turbulence at the edge of a fusion plasma. This result re-establishes SOC as a potential paradigm for transport in magnetic fusion devices, overriding shortcomings pointed out in earlier works [E. Spada, et al, Phys. Rev. Lett. 86, 3032 (2001); V. Antoni, et al, Phys. Rev. Lett. 87, 045001 (2001)].Comment: 4 pages, 4 figure

    Exact equqations and scaling relations for f-avalanche in the Bak-Sneppen evolution model

    Full text link
    Infinite hierarchy of exact equations are derived for the newly-observed f-avalanche in the Bak-Sneppen evolution model. By solving the first order exact equation, we found that the critical exponent which governs the divergence of the average avalanche size, is exactly 1 (for all dimensions), confirmed by the simulations. Solution of the gap equation yields another universal exponent, denoting the the relaxation to the attractor, is exactly 1. We also establish some scaling relations among the critical exponents of the new avalanche.Comment: 5 pages, 1 figur

    Elliptic supertube and a Bogomol'nyi-Prasad-Sommerfield D2-brane--anti-D2-brane Pair

    Full text link
    An exact solution, in which a D2-brane and an anti-D2-brane are connected by an elliptically tubular D2-brane, is obtained without any junction condition. The solution is shown to preserve one quarter of the supersymmetries of the type-IIA Minkowski vacuum. We show that the configuration cannot be obtained by "blowing-up" from some inhomogeneously D0-charged superstrings. The BPS bound tells us that it is rather composed of D0-charged D2-brane-anti-D2-brane pair and a strip of superstrings connecting them. We obtain the correction to the charges of the string end points in the constant magnetic background.Comment: v3. 12 pages, journal version; title changed, length trimmed to fit for Rapid Communication forma

    Noncommutative Vortex Solitons

    Full text link
    We consider the noncommutative Abelian-Higgs theory and investigate general static vortex configurations including recently found exact multi-vortex solutions. In particular, we prove that the self-dual BPS solutions cease to exist once the noncommutativity scale exceeds a critical value. We then study the fluctuation spectra about the static configuration and show that the exact non BPS solutions are unstable below the critical value. We have identified the tachyonic degrees as well as massless moduli degrees. We then discuss the physical meaning of the moduli degrees and construct exact time-dependent vortex configurations where each vortex moves independently. We finally give the moduli description of the vortices and show that the matrix nature of moduli coordinates naturally emerges.Comment: 22 pages, 1 figure, typos corrected, a comment on the soliton size is adde

    Secondary prevention of stroke: Using the experiences of patients and carers to inform the development of an educational resource

    Get PDF
    Copyright @ The Author 2008. This article is available open access through the publisher’s website at the link below.Background. Patients who have had one stroke are at increased risk of another. Secondary prevention strategies that address medical risk factors and promote healthy lifestyles can reduce the risk. However, concordance with secondary prevention strategies is poor and there has been little research into patient and carer views. Objectives. To explore the experiences of patients and carers of receiving secondary prevention advice and use these to inform the development of an educational resource. Methods. A total of 38 participants (25 patients and 13 carers) took part in the study which used an action research approach. Focus groups and interviews were undertaken with patients and carers who had been discharged from hospital after stroke (between 3 and 24 months previously). Framework analysis was used to examine the data and elicit action points to develop an educational resource. Results. Participants’ main concern was their desire for early access to information. They commented on their priorities for what information or support they needed, the difficulty of absorbing complex information whilst still an in-patient and how health professionals’ use of language was often a barrier to understanding. They discussed the facilitators and barriers to making lifestyle changes. The educational resource was developed to include specific advice for medical and lifestyle risk factors and an individual action plan. Conclusion. An educational resource for secondary prevention of stroke was developed using a participatory methodology. Our findings suggest that this resource is best delivered in a one-to-one manner, but further work is needed to identify its potential utility.Peninsula Primary Care Research Networ

    Finite driving rate and anisotropy effects in landslide modeling

    Full text link
    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors is presented.Comment: 8 pages, 9 figure

    M-theory Supertubes with Three and Four Charges

    Full text link
    Using the covariant M5-brane action, we construct configurations corresponding to supertubes with three and four charges. We derive the BPS equations and study the full structure of the solutions. In particular, we find new solutions involving arbitrariness in field strengths.Comment: 24 pages, references added and typos correcte

    Network of recurrent events for the Olami-Feder-Christensen model

    Full text link
    We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder and Christensen (OFC) to mimic earthquakes and investigate to which extent this simple model is able to reproduce the observed spatiotemporal clustering of seismicty. Following a recently proposed method to characterize such clustering by networks of recurrent events [Geophys. Res. Lett. {\bf 33}, L1304, 2006], we find that for synthetic catalogs generated by the OFC model these networks have many non-trivial statistical properties. This includes characteristic degree distributions -- very similar to what has been observed for real seismicity. There are, however, also significant differences between the OFC model and earthquake catalogs indicating that this simple model is insufficient to account for certain aspects of the spatiotemporal clustering of seismicity.Comment: 11 pages, 16 figure

    The origin of power-law distributions in self-organized criticality

    Full text link
    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. Power law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions. At the mean time, the mean spatial size for avalanches with the same lifetime is found to increase in a power law with the lifetime.Comment: 4 pages in RevTeX, 3 eps figures. To appear in J.Phys.G. To appear in J. Phys.
    corecore