31 research outputs found

    EMERGING TECHNOLOGIES & THEIR ADOPTION ACROSS US DOT'S: A PURSUIT TO OPTIMIZE PERFORMANCE IN HIGHWAY INFRASTRUCTURE PROJECT DELIVERY

    Get PDF
    In the transportation construction industry, emerging technologies have changed how state departments of transportation (DOTs) deliver highway construction projects. New and innovative technologies continue to be introduced, improved, and implemented for highway construction and their use has resulted in faster, more accurate, and more efficient planning, design, and construction. As the highway construction industry infuses more technologies into the process of project delivery, state DOTs have an opportunity to realize improved project performance regarding cost, schedule, and quality. The Federal Highway Administration (FHWA) Every Day Counts (EDC) initiatives promote the use of various advanced and emerging technologies (e.g., automated machine guidance, unmanned aircraft systems, building information modeling, handheld instruments and devices, and work zone intrusion detection systems). The use and implementation of emerging technologies vary significantly across the United States. The variety of use and experience is attributed to challenges and barriers that DOT face to investigate, test, and implement a specific technology. The implementation of emerging technologies also depends on the support received from internal management, the state legislation, as well as the ability of the technology to solve a problem within the specific processes of a state DOT. As technologies continue to be introduced and improve, state DOTs continue to consider and explore various technologies for construction. The main objective of this thesis is to identify and document the state of practice, typical benefits and challenges, and trends in the use of select emerging technologies for highway construction delivery. This thesis utilized survey questionnaire, interviews and case study as research tools to fulfill the objective of the research. This five technology areas are: 1) visualization and modeling; 2) interconnected technologies; 3) safety technologies; 4) instrumentation and sensors; and 5) unmanned aircraft systems. Visualization and modeling technologies include building information modeling, virtual and augmented reality, light detection and ranging (LiDAR), and 3D printing. Interconnected technologies for construction vehicles, equipment, and tools are used for delivery and haul vehicles, pavement and earthwork equipment, and handheld tools. The results show that each DOT uses a definitive approach from initiation to implementation of technology. Some technologies like visualization and modelling have matured more than others and hence are exploited to full potential. The major challenges faced by DOTs in technology implementation are lack of availability of standard documents and the reluctance from senior management towards change. Case study results showed that general contractors are more active in implementing the technologies and reaping the benefits from these technologies, have in house staff that is experienced on its use, and exploit the possible outputs. The results of this study will provide practitioners and professionals with proactive measures and guidance on successfully implementing technology at agency (DOT) and project level

    Mouse Models of Acute Kidney Injury

    Get PDF
    Acute Kidney Injury (AKI) is a poor prognosis in hospitalized patients that is associated with high degree of mortality. AKI is also a major risk factor for development of chronic kidney disease. Despite these serious complications associated with AKI there has not been a great amount of progress made over the last half-century. Here we have outlined and provided details on variety of mouse models of AKI. Some of the mouse models of AKI are renal pedicle clamping (ischemia reperfusion injury), Cisplatin induced nephrotoxicity, sepsis (LPS, cecal slurry, and cecal ligation and puncture), folic acid, and rhabdomyolysis. In this chapter we describe in detail the protocols that are used in our laboratories

    miR-10a-3p modulates adiposity and suppresses adipose inflammation through TGF-β1/Smad3 signaling pathway

    Get PDF
    BackgroundObesity is a multifactorial disease characterized by an enhanced amount of fat and energy storage in adipose tissue (AT). Obesity appears to promote and maintain low-grade chronic inflammation by activating a subset of inflammatory T cells, macrophages, and other immune cells that infiltrate the AT. Maintenance of AT inflammation during obesity involves regulation by microRNAs (miRs), which also regulate the expression of genes implicated in adipocyte differentiation. This study aims to use ex vivo and in vitro approaches to evaluate the role and mechanism of miR-10a-3p in adipose inflammation and adipogenesis.MethodsWild-type BL/6 mice were placed on normal (ND) and high-fat diet (HFD) for 12 weeks and their obesity phenotype, inflammatory genes, and miRs expression were examined in the AT. We also used differentiated 3T3-L1 adipocytes for mechanistic in vitro studies.ResultsMicroarray analysis allowed us to identify an altered set of miRs in the AT immune cells and Ingenuity pathway analysis (IPA) prediction demonstrated that miR-10a-3p expression was downregulated in AT immune cells in the HFD group as compared to ND. A molecular mimic of miR-10a-3p reduced expression of inflammatory M1 macrophages, cytokines, and chemokines, including transforming growth factor-beta 1 (TGF-β1), transcription factor Krüppel-like factor 4 (KLF4), and interleukin 17F (IL-17F) and induced expression of forkhead box P3 (FoxP3) in the immune cells isolated from AT of HFD-fed mice as compared to ND. In differentiated 3T3-L1 adipocytes, the miR-10a-3p mimics also reduced expression of proinflammatory genes and lipid accumulation, which plays a role in the dysregulation of AT function. In these cells, overexpression of miR-10a-3p reduced the expression of TGF-β1, Smad3, CHOP-10, and fatty acid synthase (FASN), relative to the control scramble miRs.ConclusionOur findings suggest that miR-10a-3p mimic mediates the TGF-β1/Smad3 signaling to improve metabolic markers and adipose inflammation. This study provides a new opportunity for the development of miR-10a-3p as a novel therapeutic for adipose inflammation, and its associated metabolic disorders

    Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia

    Get PDF
    Copyright © 2020 the American Physiological Society. During the newborn period, intestinal commensal bacteria influence pulmonary mucosal immunology via the gut-lung axis. Epidemiological studies have linked perinatal antibiotic exposure in human newborns to an increased risk for bronchopulmonary dysplasia, but whether this effect is mediated by the gut-lung axis is unknown. To explore antibiotic disruption of the newborn gut-lung axis, we studied how perinatal maternal antibiotic exposure influenced lung injury in a hyperoxia-based mouse model of bronchopulmonary dysplasia. We report that disruption of intestinal commensal colonization during the perinatal period promotes a more severe bronchopulmonary dysplasia phenotype characterized by increased mortality and pulmonary fibrosis. Mechanistically, metagenomic shifts were associated with decreased IL-22 expression in bronchoalveolar lavage and were independent of hyperoxia-induced inflammasome activation. Collectively, these results demonstrate a previously unrecognized influence of the gut-lung axis during the development of neonatal lung injury, which could be leveraged to ameliorate the most severe and persistent pulmonary complication of preterm birth

    Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury

    Get PDF
    Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeriamonocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response. Copyright © 2013 by the American Society of Nephrology

    Bone marrow stromal cell antigen-1 (CD157) regulated by sphingosine kinase 2 mediates kidney fibrosis

    Get PDF
    Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2−/−) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1- phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1−/− mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis

    Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to “Regulatory” Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells

    No full text
    Natural IgM anti-leukocyte autoantibodies (IgM-ALAs) inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs) are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI) via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs

    A Review of Defatting Strategies for Non-Alcoholic Fatty Liver Disease

    No full text
    Non-alcoholic fatty liver disease is a huge cause of chronic liver failure around the world. This condition has become more prevalent as rates of metabolic syndrome, type 2 diabetes, and obesity have also escalated. The unfortunate outcome for many people is liver cirrhosis that warrants transplantation or being unable to receive a transplant since many livers are discarded due to high levels of steatosis. Over the past several years, however, a great deal of work has gone into understanding the pathophysiology of this disease as well as possible treatment options. This review summarizes various defatting strategies including in vitro use of pharmacologic agents, machine perfusion of extracted livers, and genomic approaches targeting specific proteins. The goal of the field is to reduce the number of necessary transplants and expand the pool of organs available for use

    Mitochondrial Role in Oncogenesis and Potential Chemotherapeutic Strategy of Mitochondrial Infusion in Breast Cancer

    No full text
    Triple negative breast cancer (TNBC) is one of the most aggressive cancers diagnosed amongst women with a high rate of treatment failure and a poor prognosis. Mitochondria have been found to be key players in oncogenesis and tumor progression by mechanisms such as altered metabolism, reactive oxygen species (ROS) production and evasion of apoptosis. Therefore, mitochondrial infusion is an area of interest for cancer treatment. Studies in vitro and in vivo demonstrate mitochondrial-mediated reduction in glycolysis, enhancement of oxidative phosphorylation (OXPHOS), reduction in proliferation, and an enhancement of apoptosis as effective anti-tumor therapies. This review focuses on mitochondrial dysregulation and infusion in malignancies, such as TNBC
    corecore