11 research outputs found

    Sugar amino acids and related molecules: some recent developments

    Get PDF
    To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started working on many new concepts that can help to assimilate knowledge-based structural diversities more efficiently than ever before. Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create 'nature-like' and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of peptidomimetic studies. Advances made in the area of combinatorial chemistry can provide the necessary technological support for rapid compilations of sugar amino acidbased libraries exploiting the diversities of their carbohydrate frameworks and well-developed solid-phase peptide synthesis methods. This perspective article chronicles some of the recent applications of various sugar amino acids, furan amino acids, pyrrole amino acids etc. and many other related building blocks in wide-ranging peptidomimetic studies

    Chemistry And Behavioral Studies Identify Chiral Cyclopropanes As Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting An Antidepressant Profile

    Get PDF
    Despite their discovery in the early 20th century and intensive study over the last 20 years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity while acting as partial agonists at α4β2-nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening toward other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression. © 2011 American Chemical Society

    Synthesis and DNA binding properties of pyrrole amino acid-containing peptides

    No full text
    Dimers of the pyrrole amino acid (Paa), 5-(aminomethyl)pyrrole-2-carboxylic acid, and its derivatives having Lys anchored on N- and C-termini bind in the minor groove of DNA with considerable apparent binding affinities. When the Lys unit is attached to the C-terminus, the resulting ligand binds to ds-DNA with twice the affinity, of the order of 105, than the one carrying two positive charges at the same end

    Sugar amino acids in designing new molecules

    No full text
    Emulating the basic principles followed by Nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create 'nature-like' and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. This article describes some of our works on various sugar amino acids and many other related building blocks, like furan amino acids, pyrrole amino acids etc. used in wide-ranging peptidomimetic studies

    Synthesis and characterization of Boc-protected 4-amino-and 5-amino-pyrrole-2-carboxylic acid methyl esters

    No full text
    Syntheses of Boc-protected 4-amino- and 5-amino-pyrrole-2-carboxylic acid methyl esters have been achieved and the structures of these compounds have been fully characterized by detailed NMR studies

    Chemistry And Pharmacology Of Nicotinic Ligands Based On 6-[5-(Azetidin-2-Ylmethoxy)Pyridin-3-Yl]Hex-5-Yn-1-Ol (Amop-H-Oh) For Possible Use In Depression

    No full text
    AMOP-H-OH (sazetidine-A; 6-[5-(azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn- 1-ol) and some sulfur-bearing analogues were tested for their activities in vitro against human α4β2-, α4β4-, α3β4*- and α1*-nicotinic acetylcholine receptors (nAChRs). AMOP-H-OH was also assessed in an antidepressant efficacy model. AMOP-H-OH and some of its analogues have high potency and selectivity for α4β2-nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (α4) 3 (β2) 2 -nAChRs. More prolonged exposure to AMOP-H-OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for α4β2-nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of α4β2-nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP-H-OH and some of its analogues have a set of binding sites on α4β2-nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP-H-OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP-H-OH also has profound and high potency antidepressant-like effects in the forced swim test. The net action of prolonged exposure to AMOP-H-OH or its analogues, as for nicotine, seems to be a selective decrease in α4β2-nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA

    Chemistry and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile

    No full text
    Despite their discovery in the early 20th century and intensive study over the last 20 years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity while acting as partial agonists at α4β2–nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening toward other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression

    Chemistry and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile

    No full text
    Despite their discovery in the early 20th century and intensive study over the last 20 years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity while acting as partial agonists at α4β2–nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening toward other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression
    corecore