6 research outputs found

    Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper

    No full text
    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved

    Design of a New Seismoelectric Logging Instrument

    No full text
    To increase the accuracy of reservoir evaluation, a new type of seismoelectric logging instrument was designed. The designed tool comprises the invented sonde-structured array complex. The tool includes several modules, including a signal excitation module, data acquisition module, phased array transmitting module, impedance matching module and a main system control circuit, which are interconnected through high-speed tool bus to form a distributed architecture. UC/OS-II was used for the real-time system control. After constructing the experimental measurement system prototype of the seismoelectric logging detector, its performance was verified in the laboratory. The obtained results showed that the consistency between the multi-channel received waveform amplitude and benchmark spectrum was more than 97%. The binary phased linear array transmitting module of the instrument can realize 0° to 20° deflection and directional radiation. In the end, a field test was conducted to verify the tool’s performance in downhole conditions. The results of this test proved the effectiveness of the developed seismoelectric logging tool

    Electrical Interference Simulation and Prediction Model for Acoustoelectric Logging Detector

    No full text
    Acoustic logging instruments generate high voltages in the order of thousands of volts. Electrical interferences are thus induced by high-voltage pulses that affect the logging tool and make it inoperable owing to damaged components in severe cases. High-voltage pulses from the acoustoelectric logging detector interfere with the electrode measurement loop through capacitive coupling, which has seriously affected the acoustoelectric signal measurements. In this paper, we simulate high voltage pulses, capacitive coupling and electrode measurement loops based on qualitative analysis of the causes of electrical interference. Based on the structure of the acoustoelectric logging detector and the logging environment, an electrical interference simulation and prediction model was developed to quantify the characteristics of the electrical interference signal

    Research on Test-bench for Sonic Logging Tool

    No full text
    In this paper, the test-bench for sonic logging tool is proposed and designed to realize automatic calibration and testing of the sonic logging tool. The test-bench System consists of Host Computer, Embedded Controlling Board, and functional boards. The Host Computer serves as the Human Machine Interface (HMI) and processes uploaded data. The software running on Host Computer is designed on VC++, which is developed based on multithreading, Dynamic Linkable Library (DLL) and Multiple Document Interface (MDI) techniques. The Embedded Controlling Board uses ARM7 as the microcontroller and communicates with Host Computer via Ethernet. The Embedded Controlling Board software is realized based on embedded uclinux operating system with a layered architecture. The functional boards are designed based on Field Programmable Gate Array (FPGA) and provide test interfaces for the logging tool. The functional board software is divided into independent sub-modules that can repeatedly be used by various functional boards and then integrated those sub-modules in the top layer. With the layered architecture and modularized design, the software system is highly reliable and extensible. With the help of designed system, a test has been conducted quickly and successfully on the electronic receiving cabin of the sonic logging tool. It demonstrated that the system could greatly improve the production efficiency of the sonic logging tool

    Research on Test-bench for Sonic Logging Tool

    Get PDF
    In this paper, the test-bench for sonic logging tool is proposed and designed to realize automatic calibration and testing of the sonic logging tool. The test-bench System consists of Host Computer, Embedded Controlling Board, and functional boards. The Host Computer serves as the Human Machine Interface (HMI) and processes uploaded data. The software running on Host Computer is designed on VC++, which is developed based on multithreading, Dynamic Linkable Library (DLL) and Multiple Document Interface (MDI) techniques. The Embedded Controlling Board uses ARM7 as the microcontroller and communicates with Host Computer via Ethernet. The Embedded Controlling Board software is realized based on embedded uclinux operating system with a layered architecture. The functional boards are designed based on Field Programmable Gate Array (FPGA) and provide test interfaces for the logging tool. The functional board software is divided into independent sub-modules that can repeatedly be used by various functional boards and then integrated those sub-modules in the top layer. With the layered architecture and modularized design, the software system is highly reliable and extensible. With the help of designed system, a test has been conducted quickly and successfully on the electronic receiving cabin of the sonic logging tool. It demonstrated that the system could greatly improve the production efficiency of the sonic logging tool

    Real-Time Method and Implementation of Head-Wave Extraction for Ultrasonic Imaging While Drilling

    No full text
    Extracting head waves and subsequently uploading their results from the downhole to the surface system in real time could improve the real-time guidance of ultrasonic imaging logging while drilling (UILWD) for drilling operations. To realize the downhole real-time extraction of head waves in this logging, three aspects were explored in this study. First, an improved energy ratio head-wave arrival extraction algorithm based on the weighting coefficients and characteristic functions, along with an amplitude detection method relying on peak-to-peak values, was proposed. Second, an echo reception pre-processing analog circuit and a digital signal processing circuit based on FPGA were designed. A pipeline algorithm was developed in FPGA to extract the arrival time and amplitude of the head wave. Finally, software simulations, laboratory tests, and field experiments related to this method were conducted. Our results showed that the real-time head-wave extraction method demonstrated a strong anti-noise ability in real time. The maximum relative error of the arrival time was less than 5%. The relative error of the amplitude was acceptable, and 90% of this value was within 5%. Through the measurement, the time of processing a single-channel waveform by a downhole algorithm was less than 15 ms, thus meeting the requirements for the real-time processing of downholes
    corecore