10 research outputs found

    Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    Get PDF
    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase

    The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests

    No full text
    Forest bathing, i.e. spending time in a forest to walk, view and breathe in a forest, can alleviate the mental depression of visitors, but the tree-species-specific effect of this function by the urban forest is unknown. In this study, sixty-nine university students (aged 19-22, male ratio: 38%) were recruited as participants to visit urban forests dominated by birch (Betula platyphylla Suk.), maple (Acer triflorum Komarov) and oak (Quercus mongolica Fisch. ex Ledeb) trees in a park at the center of Changchun City, Northeast China. In the maple forest only the anxiety from study interest was decreased, while the anxiety from employment pressure was alleviated to the most extent in the birch forest. Participants perceived more anxiety from lesson declined in the oak forest than in the birch forest. Body parameters of weight and age were correlated with the anti-anxiety scores. In the oak forest, female participants can perceive more anxiety alleviation than male participants. For university students, forest bathing in our study can promote their study interest. Forest bathing can be more effective to alleviate the anxiety of young adults with greater weight. The birch forest was recommended to be visited by students to alleviate the pressure of employment worry, and the oak forest was recommended to be visited by girls.</p

    Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor

    No full text
    A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1) in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21), the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 Όmol/h/mg; E value, 147.1). After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically

    Increased CO2 concentrations increasing water use efficiency and improvement PSII function of mulberry seedling leaves under drought stress

    No full text
    In this paper, the effects of different CO2 concentrations (400 and 800 Όmol·mol−1) on photosynthetic gas exchange and chlorophyll fluorescence of mulberry (Morus alba L.) seedling leaves under drought stress were studied using an artificial climate chamber. The results showed that under non-drought conditions, the stomatal concentrations (Gs) and transpiratration rate (Tr) of mulberry seedling leaves decreased slightly with increased CO2 concentrations, but the net photosynthetic rate (Pn) increased significantly. Under mild drought stress (5 days of drought), higher CO2 concentrations significantly affected the photosynthetic gas exchange of mulberry seedling leaves, but had little effect on chlorophyll fluorescence. Under severe drought stress (10 das of drought), increased CO2 concentrations not only alleviated drought stress by increasing the WUE of mulberry seedling leaves, but also significantly increased its PSII photochemical activity, which promoted electron transfer on the PSII acceptor side. In conclusion, increased CO2 concentrations could raise the WUE of mulberry seedling leaves under normal water conditions and drought stress, and this effect was more significant under drought stress. Under severe drought stress, increased CO2 concentrations improved the drought resistance of mulberry seedlings by improving their PSII function

    Therapeutic potential pf phenylethanoid glycosides: A systematic review

    No full text
    Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antioxidant, neuroprotective, anti-inflammatory, antibacterial, antiviral, antidiabetic, anticancer, and antiobesity properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future
    corecore