4,521 research outputs found

    Flux domes in superconducting films without edges

    Full text link
    Domelike magnetic-flux-density distributions previously have been observed experimentally and analyzed theoretically in superconducting films with edges, such as in strips and thin plates. Such flux domes have been explained as arising from a combination of strong geometric barriers and weak bulk pinning. In this paper we predict that, even in films with bulk pinning, flux domes also occur when vortices and antivortices are produced far from the film edges underneath current-carrying wires, coils, or permanent magnets placed above the film. Vortex-antivortex pairs penetrating through the film are generated when the magnetic field parallel to the surface exceeds H_{c1}+K_c, where H_{c1} is the lower critical field and K_c = j_c d is the critical sheet-current density (the product of the bulk critical current density j_c and the film thickness d). The vortices and antivortices move in opposite directions to locations where they join others to create separated vortex and antivortex flux domes. We consider a simple arrangement of a pair of current-carrying wires carrying current I_0 in opposite directions and calculate the magnetic-field and current-density distributions as a function of I_0 both in the bulk-pinning-free case (K_c = 0) and in the presence of bulk pinning, characterized by a field-independent critical sheet-current density (K_c > 0).Comment: 15 pages, 23 figure

    Electric Field-Free Gas Breakdown in Explosively Driven Generators

    Get PDF
    All known types of gas discharges require an electric field to initiate them. We are reporting on a unique type of gas breakdown in explosively driven generators that does not require an electric field

    DynPeak : An algorithm for pulse detection and frequency analysis in hormonal time series

    Get PDF
    The endocrine control of the reproductive function is often studied from the analysis of luteinizing hormone (LH) pulsatile secretion by the pituitary gland. Whereas measurements in the cavernous sinus cumulate anatomical and technical difficulties, LH levels can be easily assessed from jugular blood. However, plasma levels result from a convolution process due to clearance effects when LH enters the general circulation. Simultaneous measurements comparing LH levels in the cavernous sinus and jugular blood have revealed clear differences in the pulse shape, the amplitude and the baseline. Besides, experimental sampling occurs at a relatively low frequency (typically every 10 min) with respect to LH highest frequency release (one pulse per hour) and the resulting LH measurements are noised by both experimental and assay errors. As a result, the pattern of plasma LH may be not so clearly pulsatile. Yet, reliable information on the InterPulse Intervals (IPI) is a prerequisite to study precisely the steroid feedback exerted on the pituitary level. Hence, there is a real need for robust IPI detection algorithms. In this article, we present an algorithm for the monitoring of LH pulse frequency, basing ourselves both on the available endocrinological knowledge on LH pulse (shape and duration with respect to the frequency regime) and synthetic LH data generated by a simple model. We make use of synthetic data to make clear some basic notions underlying our algorithmic choices. We focus on explaining how the process of sampling affects drastically the original pattern of secretion, and especially the amplitude of the detectable pulses. We then describe the algorithm in details and perform it on different sets of both synthetic and experimental LH time series. We further comment on how to diagnose possible outliers from the series of IPIs which is the main output of the algorithm.Comment: Nombre de pages : 35 ; Nombre de figures : 16 ; Nombre de tableaux :

    Biharmonic Riemannian submersions from 3-manifolds

    Full text link
    An important theorem about biharmonic submanifolds proved independently by Chen-Ishikawa [CI] and Jiang [Ji] states that an isometric immersion of a surface into 3-dimensional Euclidean space is biharmonic if and only if it is harmonic (i.e, minimal). In a later paper [CMO2], Cadeo-Monttaldo-Oniciuc shown that the theorem remains true if the target Euclidean space is replaced by a 3-dimensional hyperbolic space form. In this paper, we prove the dual results for Riemannian submersions, i.e., a Riemannian submersion from a 3-dimensional space form of non-positive curvature into a surface is biharmonic if and only if it is harmonic

    Electric Discharge Caused by Expanding Armatures in Flux Compression Generators

    Get PDF
    In this letter, we experimentally demonstrate that explosively driven expansion of metallic armature of the magnetic flux compression generator (FCG) plays a dominant role in the formation of plasma and electric discharge initiation inside the FCG

    Pulse Charging of Capacitor Bank by Explosive-Driven Shock Wave Ferroelectric Generator

    Get PDF
    Ultracompact explosive-driven shock wave ferroelectric generators (FEGs) were used as autonomous primary power sources for charging capacitor banks of different capacitance. The FEGs utilized longitudinal (when the shock wave propagates along the polarization vector P) shock wave depolarization of Pb(Zr52Ti48)O3 (PZT) polycrystalline ferroelectric ceramic. PZT disks having diameters ranging from 25 to 27 mm and three different thicknesses: 0.65, 2.1, and 5.1 mm. It was experimentally shown that during the charging process the FEGs were capable of producing pulsed power with peak amplitudes up to 0.3 MW. Results for charging voltage, electric charge transfer and energy transfer from the FEGs to the capacitor banks of capacitances CL = 2.25, 4.5, 9.0, 18.0, and 36.0 nF are presented. Analysis of the experimental data shows that the maximum energy transfer from the FEG to the capacitor bank differs for each type of ferroelectric energy-carrying element, and is dependent upon the capacitance of the capacitor banks

    Transverse Explosive Shock-Wave Compression of Nd₂Fe₁₄B High-Energy Hard Ferromagnets: Induced Magnetic Phase Transition

    Get PDF
    Investigations of the magnetic phase state of Nd2Fe14B high-energy hard ferromagnets under the action of an explosive shock wave traveling across the magnetization vector, M, have been performed. We demonstrate that the transverse shock-wave compression of an Nd2Fe14B hard ferromagnet with pressure at the shock wave front of P = 22.3 GPa causes a hard ferromagnet — to — weak magnet phase transition. Due to this phase transition, the magnetostatic energy stored for an indefinite period of time in the Nd2Fe14B ferromagnet is released within a short time interval and can be transformed into pulsed primary power. Based on this effect we have developed a new type of ultracompact (volumes from 9 to 50 cm3) autonomous explosive-driven source of primary power that is capable of powering a magnetic flux compression generator with current up to 4 kA, and of charging high-voltage Arkadiev-Marx type generator capacitor banks

    Explosive-Driven Mini-System Based on Shock Wave Ferromagnetic Seed Source and Loop Magnetic Flux Compression Generator

    Get PDF
    Completely explosive pulsed power mini-systems based on the transverse shock wave ferromagnetic generator (FMG) served as a seed source and loop magnetic flux compression generator (LFCG) as a pulsed power amplifier were proposed, designed, built and tested. The physical principles and design of the developed FMG-LFCG system are described in detail. Experimental data are presented for the explosive operation and electrical performance of the system

    New Concept for Constructing an Autonomous Completely Explosive Pulsed Power System: Transverse Shock Wave Ferromagnetic Primary Power Source and Loop Flux Compression Amplifier

    Get PDF
    A new design idea for a compact, autonomous, completely explosive pulsed power system is proposed. The system is based on the shock wave ferromagnetic generator (FMG) as a primary power source and a loop magnetic flux compression generator (LFCG) as a pulsed power amplifier. The FMG primary power source utilizes the effect of transverse shock wave demagnetization of Nd2Fe14B high-energy hard ferromagnets to produce the seed current. Results are presented of an experimental study and digital simulation of operation of the FMG-LFCG syste

    Compact Autonomous Explosive-Driven Pulsed Power System Based on a Capacitive Energy Storage Charged by a High-Voltage Shock-Wave Ferromagnetic Generator

    Get PDF
    A new concept for constructing compact autonomous pulsed power systems is presented. This concept utilizes a high-voltage explosive-driven shock-wave ferromagnetic generator (FMG) as a charging source for capacitive energy storage. It has been experimentally demonstrated that miniature FMGs (22-25 cm³ in size and 84-95 g in mass) developed for these experiments can be successfully used to charge capacitor banks. The FMGs, containing Nd₂Fe₁₄B energy-carrying elements, provided pulsed powers of 35-45 kW in times ranging from 10 to 15 µs. A methodology was developed for digital simulation of the operation of the transverse FMG. Experimental results that were obtained are in a good agreement with the results of digital simulations
    corecore