548 research outputs found

    Near infrared tunable diode laser spectroscopy for aero engine related applications

    Get PDF
    Tunable diode laser spectroscopy is a widely used technique for recovering quantitative gas information in a range of industrial applications. Established methods often use readily available, robust and low cost optoelectronic hardware in the near-infrared, with output wavelengths that coincide with the absorption spectra of several important gas species of interest, providing a versatile platform for gas analysis instrumentation. In this work the challenges associated with the recovery of gas information from harsh detection environments, particularly for aero engine diagnostics, are considered. For stand-alone instrumentation, calibration-free direct absorption measurements are highly advantageous yet calibrated techniques employing wavelength modulation spectroscopy are often favoured due to their significantly higher sensitivities. Recent developments have enabled calibration-free line shape recovery using lock-in amplifier detection of the residual amplitude modulation in wavelength modulated signals. These techniques have significant potential in harsh environments, but the overall sensitivity is limited by distortions to the recovered line shapes at high modulation amplitudes and by large background signals that saturate the detection electronics. In this thesis, solutions to these two problems are proposed, investigated and validated. A correction function is derived that is able to account for line shape distortions at arbitrarily high modulation indices. Application of the function depends upon knowledge of the experimental modulation index and two methods for extracting this information directly from the experimental signals are described. The full correction procedure has been experimentally validated. An investigation was made into the use of autobalanced photoreceivers, typically used for common mode noise cancellation, for direct absorption measurements and in a different configuration for nulling of the residual amplitude modulation (RAM) in wavelength modulation spectroscopy. Initial measurements suggest that removal of the background RAM can increase the lock-in detection sensitivity by over an order of magnitude. In addition an external amplitude modulator has been iv shown to be an effective method for producing sensitive absorption signals that are free of distortions, recoverable at frequencies that are outside the bandwidth of most environmental noise sources. A temperature sensor based on ratio thermometry of ambient water vapour absorption was designed and evaluated. The sensor is intended to provide accurate intake gas temperature information during aero engine ground testing when misting conditions prevent standard thermocouples from providing reliable data. Direct detection and second harmonic wavelength modulation spectroscopy experiments were undertaken in an environmental chamber, over the range 273-313K, to test the potential accuracy of the proposed system. Using a second harmonic peak height method, temperature information based on a calibration was able to recover temperature measurements with precision of ±0.4K however the overall accuracy suffered from a problematic calibration drift. Three engine test campaigns are described in which a range of recovery methods and potential optical system layouts are evaluated for the purposes of intake and exhaust mounted test bed sensor systems. The effects of extreme noise conditions were observed on a variety of measurements and favourable detection and modulation options were identified for the purpose of planning proposed future engine tests. Exhaust plume measurements of high temperature water vapour on the Rolls-Royce Environmentally Friendly Engine demonstrator established the viability of temperature and concentration measurements up to 850K.Tunable diode laser spectroscopy is a widely used technique for recovering quantitative gas information in a range of industrial applications. Established methods often use readily available, robust and low cost optoelectronic hardware in the near-infrared, with output wavelengths that coincide with the absorption spectra of several important gas species of interest, providing a versatile platform for gas analysis instrumentation. In this work the challenges associated with the recovery of gas information from harsh detection environments, particularly for aero engine diagnostics, are considered. For stand-alone instrumentation, calibration-free direct absorption measurements are highly advantageous yet calibrated techniques employing wavelength modulation spectroscopy are often favoured due to their significantly higher sensitivities. Recent developments have enabled calibration-free line shape recovery using lock-in amplifier detection of the residual amplitude modulation in wavelength modulated signals. These techniques have significant potential in harsh environments, but the overall sensitivity is limited by distortions to the recovered line shapes at high modulation amplitudes and by large background signals that saturate the detection electronics. In this thesis, solutions to these two problems are proposed, investigated and validated. A correction function is derived that is able to account for line shape distortions at arbitrarily high modulation indices. Application of the function depends upon knowledge of the experimental modulation index and two methods for extracting this information directly from the experimental signals are described. The full correction procedure has been experimentally validated. An investigation was made into the use of autobalanced photoreceivers, typically used for common mode noise cancellation, for direct absorption measurements and in a different configuration for nulling of the residual amplitude modulation (RAM) in wavelength modulation spectroscopy. Initial measurements suggest that removal of the background RAM can increase the lock-in detection sensitivity by over an order of magnitude. In addition an external amplitude modulator has been iv shown to be an effective method for producing sensitive absorption signals that are free of distortions, recoverable at frequencies that are outside the bandwidth of most environmental noise sources. A temperature sensor based on ratio thermometry of ambient water vapour absorption was designed and evaluated. The sensor is intended to provide accurate intake gas temperature information during aero engine ground testing when misting conditions prevent standard thermocouples from providing reliable data. Direct detection and second harmonic wavelength modulation spectroscopy experiments were undertaken in an environmental chamber, over the range 273-313K, to test the potential accuracy of the proposed system. Using a second harmonic peak height method, temperature information based on a calibration was able to recover temperature measurements with precision of ±0.4K however the overall accuracy suffered from a problematic calibration drift. Three engine test campaigns are described in which a range of recovery methods and potential optical system layouts are evaluated for the purposes of intake and exhaust mounted test bed sensor systems. The effects of extreme noise conditions were observed on a variety of measurements and favourable detection and modulation options were identified for the purpose of planning proposed future engine tests. Exhaust plume measurements of high temperature water vapour on the Rolls-Royce Environmentally Friendly Engine demonstrator established the viability of temperature and concentration measurements up to 850K

    Planning for the Sun to Come Up: How Nevada and California Explain the Future of Net Metering

    Get PDF
    This Article explores the growth of rooftop solar and the future of net metering through the debates and policies of Nevada and California. Part II details the recent, rapid growth and projected future growth of solar power in the United States. Part II also describes how Nevada and Californiaare leading the nation in utilization of solar power and are already addressing issues that are likely to emerge in other areas of the country. Part III begins with a brief introduction to net metering and the national scope of net metering program reviews. Part III concludes with a summary of the most recent changes to each states net metering laws. Part IV contains a comparative analysis of five key legislative and regulatory factors influencing how net metering will develop in the future. The elements are the interaction between renewable portfolio standards and net metering programs, solar photovoltaic (PV) incentive programs, time-of-use rates, electricity sector decoupling, and comprehensive electric grid planning. Part V summarizes key findings from our research and provides lessons learned for other states considering evolving their net metering programs. Part VI concludes this article with a forward-looking assessment of the challenges facing net metering

    Recovery of absolute absorption line shapes in tunable diode laser spectroscopy using external amplitude modulation with balanced detection

    Get PDF
    Accurate recovery of an absorption lineshape is important in many industrial applications for simultaneous measurement of gas concentration and pressure or temperature. Here we demonstrate a method, based on a modification to the Hobbs balanced receiver circuit, for background signal nulling when external amplitude modulation of the laser output is used. Compared with direct or non-nulled detection techniques, we demonstrate that the method significantly improves the signal to noise ratio to a level comparable to that of conventional second harmonic wavelength modulation spectroscopy. Most importantly, normalisation and recovery of the lineshape is straightforward and immune to the difficulties that afflict lineshape recovery with conventional wavelength modulation spectroscopy

    Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure

    Get PDF
    Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention

    Cessation of biomechanical stretch model of C2C12 cells models myocyte atrophy and anaplerotic changes in metabolism using non-targeted metabolomics analysis

    Get PDF
    Studies of skeletal muscle disuse, either in patients on bed rest or experimentally in animals (immobilization), have demonstrated that decreased protein synthesis is common, with transient parallel increases in protein degradation. Muscle disuse atrophy involves a process of transition from slow to fast myosin fiber types. A shift toward glycolysis, decreased capacity for fat oxidation, and substrate accumulation in atrophied muscles have been reported, as has accommodation of the liver with an increased gluconeogenic capacity. Recent studies have modeled skeletal muscle disuse by using cyclic stretch of differentiated myotubes (C2C12), which mimics the loading pattern of mature skeletal muscle, followed by cessation of stretch. We utilized this model to determine the metabolic changes using non-targeted metabolomics analysis of the media. We identified increases in amino acids resulting from protein degradation (largely sarcomere) that occurs with muscle atrophy that are involved in feeding the Kreb’s cycle through anaplerosis. Specifically, we identified increased alanine/proline metabolism (significantly elevated proline, alanine, glutamine, and asparagine) and increased α-ketoglutaric acid, the proposed Kreb’s cycle intermediate being fed by the alanine/proline metabolic anaplerotic mechanism. Additionally, several unique pathways not clearly delineated in previous studies of muscle unloading were seen, including: 1) elevated keto-acids derived from branched chain amino aicds (i.e. 2-ketoleucine and 2-keovaline), which feed into a metabolic pathway supplying acetyl-CoA and 2-hydroxybutyrate (also significantly increased); and 2) elevated guanine, an intermediate of purine metabolism, was seen at 12 hours unloading. Given the interest in targeting different aspects of the ubiquitin proteasome system to inhibit protein degradation, this C2C12 system may allow the identification of direct and indirect alterations in metabolism due to anaplerosis or through other yet to be identified mechanisms using a non-targeted metabolomics approach

    On Horizons and Plane Waves

    Get PDF
    We investigate the possibility of having an event horizon within several classes of metrics that asymptote to the maximally supersymmetric IIB plane wave. We show that the presence of a null Killing vector (not necessarily covariantly constant) implies an effective separation of the Einstein equations into a standard and a wave component. This feature may be used to generate new supergravity solutions asymptotic to the maximally supersymmetric IIB plane wave, starting from standard seed solutions such as branes or intersecting branes in flat space. We find that in many cases it is possible to preserve the extremal horizon of the seed solution. On the other hand, non-extremal deformations of the plane wave solution result in naked singularities. More generally, we prove a no-go theorem against the existence of horizons for backgrounds with a null Killing vector and which contain at most null matter fields. Further attempts at turning on a nonzero Hawking temperature by introducing additional matter have proven unsuccessful. This suggests that one must remove the null Killing vector in order to obtain a horizon. We provide a perturbative argument indicating that this is in fact possible.Comment: 46 pp, 1 figur
    • …
    corecore