5,256 research outputs found

    Airplane take-off performance indicator Patent

    Get PDF
    Aircraft instrument for indicating malfunctions during takeof

    A simplified theoretical method of determining the characteristics of a lifting rotor in forward flight

    Get PDF
    Theoretical derived expressions for the flapping, the thrust, the torque, and the profile drag-lift ratio of nonfeathering rotor with hinged, rectangular, linearly twisted blades are given as simple functions of the inflow velocity and the blade pitch. Representative values of the coefficients of each of the terms in these expressions are tabulated for a series of specified values of the tip-speed ratio. Analysis indicates that the tabulated values can be used to calculate, with reasonable accuracy, the characteristics of any rotor of conventional design

    A study of the torque equilibrium of an autogiro rotor

    Get PDF
    Two improvements have been made in the method developed in NACA Reports nos. 487 and 591 for the estimation of the inflow velocity required to overcome a given decelerating torque in an autogiro rotor. At low tip-speed ratios, where the assumptions necessary for the analytical integrations of the earlier papers are valid, the expressions therein derived are greatly simplified by combining and eliminating terms with a view of minimizing the numerical computations required. At high tip-speed ratios, by means of charts based on graphical integrations, errors inherent in the assumptions associated with the analytical method are largely eliminated. The suggested method of estimating the inflow velocity presupposes a knowledge of the decelerating torque acting on the rotor; all available full-scale experimental information on this subject is included

    Observations in Flight of the Region of Stalled Flow over the Blades of an Autogiro Rotor

    Get PDF
    The flow over the inner halves of the rotor blades on a Kellet YG-1B autogiro was investigated in flight by making camera records of the motion of silk streamers attached to the upper surfaces of the blades. These records were analyzed to determine the boundaries of the region within which the flow over the blade sections was stalled for various tip-speed ratios. For the sake of comparison, corresponding theoretical boundaries were obtained. Both the size of the stalled area and its rate of growth with increasing tip-speed ratio were found to be larger than the theory predicted, although experiment agreed with theory with regard to shape and general location of the stalled area. The stalled region may be an important factor in both the rotor lift-drag ratio and the blade flapping motion at the higher tip-speed ratios. The method of study used in this paper should be useful in further studies of the problem, including the reduction of the size of the region

    A Flight Determination of the Moments of the YG-1B Tapered Blade Rotor about the Hub Trunnions

    Get PDF
    At the request of the Materiel Division, Wright Field, the National Advisory Committee for Aeronautics is conducting a program of flight tests on a Kellett YG-1B autogiro equipped with a new type of rotor blade. The new blades are tapered in both plan form. and thickness and are designed to avoid periodic blade twist. One phase of the investigation, involving determination of the moments of the resultant rotor force about the trunnions on which the hub is pivoted for control, has been completed. The results obtained are reported herein

    Drag Measurement at Transonic Speeds on a Freely Falling Body

    Get PDF
    Direct measurements have been made of the drag of a special test body and its stabilizing tail surfaces throughout free drops from high altitudes. The data obtained have been used to establish the relation between the drag coefficient and the Mach number for the body and for the tail surfaces over a range of Mach numbers from 0.85 to 1.15. For bodies of the form tested, the drag per square foot of frontal area increased abruptly from about 3 percent of atmospheric pressure at a Mach number of 0.95 to 17 percent of atmospheric pressure at a Mach number of 1.00, then linearly with Mach number to 28 percent of atmospheric pressure at a Mach number of approximately 1.15. Some doubt exists as to the applicability of the tail drag results to the estimation of wing drag at transonic speeds because of the possibility of appreciable interference effects between the vertical and the horizontal surfaces and between the body and the tail surfaces. Insofar as they are applicable, the tail drag results indicated that with symmetrical 6-percent-thick area may be expected to increase abruptly from 4 percent of atmospheric pressure at a Mach number of 0.88 to 36 percent of atmospheric pressure at a Mach number of 1.00, then linearly with Mach number to approximately 50 percent of atmospheric pressure at a Mach number of 1.15

    Cardiorespiratory fitness is associated with hard and light intensity physical activity but not time spent sedentary in 10–14 year old schoolchildren: the HAPPY study

    Get PDF
    Sedentary behaviour is a major risk factor for developing chronic diseases and is associated with low cardiorespiratory fitness in adults. It remains unclear how sedentary behaviour and different physical activity subcomponents are related to cardiorespiratory fitness in children. The purpose of this study was to assess how sedentary behaviour and different physical activity subcomponents are associated with 10–14 year-old schoolchildren's cardiorespiratory fitness

    NRLMSIS 2.1: An Empirical Model of Nitric Oxide Incorporated Into MSIS

    Get PDF
    We have developed an empirical model of nitric oxide (NO) number density at altitudes from ∼73 km to the exobase, as a function of altitude, latitude, day of year, solar zenith angle, solar activity, and geomagnetic activity. The model is part of the NRLMSIS® 2.1 empirical model of atmospheric temperature and species densities; this upgrade to NRLMSIS 2.0 consists solely of the addition of NO. MSIS 2.1 assimilates observations from six space-based instruments: UARS/HALOE, SNOE, Envisat/MIPAS, ACE/FTS, Odin/SMR, and AIM/SOFIE. We additionally evaluated the new model against independent extant NO data sets. In this paper, we describe the formulation and fitting of the model, examine biases between the data sets and model and among the data sets, compare with another empirical NO model (NOEM), and discuss scientific aspects of our analysis

    Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study

    Get PDF
    Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth
    corecore