1,497 research outputs found
Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition
The one-dimensional totally asymmetric simple exclusion process (TASEP) is
considered. We study the time evolution property of a tagged particle in TASEP
with the step-type initial condition. Calculated is the multi-time joint
distribution function of its position. Using the relation of the dynamics of
TASEP to the Schur process, we show that the function is represented as the
Fredholm determinant. We also study the scaling limit. The universality of the
largest eigenvalue in the random matrix theory is realized in the limit. When
the hopping rates of all particles are the same, it is found that the joint
distribution function converges to that of the Airy process after the time at
which the particle begins to move. On the other hand, when there are several
particles with small hopping rate in front of a tagged particle, the limiting
process changes at a certain time from the Airy process to the process of the
largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure
Random walks and random fixed-point free involutions
A bijection is given between fixed point free involutions of
with maximum decreasing subsequence size and two classes of vicious
(non-intersecting) random walker configurations confined to the half line
lattice points . In one class of walker configurations the maximum
displacement of the right most walker is . Because the scaled distribution
of the maximum decreasing subsequence size is known to be in the soft edge GOE
(random real symmetric matrices) universality class, the same holds true for
the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page
Edge scaling limits for a family of non-Hermitian random matrix ensembles
A family of random matrix ensembles interpolating between the GUE and the
Ginibre ensemble of matrices with iid centered complex Gaussian
entries is considered. The asymptotic spectral distribution in these models is
uniform in an ellipse in the complex plane, which collapses to an interval of
the real line as the degree of non-Hermiticity diminishes. Scaling limit
theorems are proven for the eigenvalue point process at the rightmost edge of
the spectrum, and it is shown that a non-trivial transition occurs between
Poisson and Airy point process statistics when the ratio of the axes of the
supporting ellipse is of order . In this regime, the family of
limiting probability distributions of the maximum of the real parts of the
eigenvalues interpolates between the Gumbel and Tracy-Widom distributions.Comment: 44 page
Recommended from our members
AMP-activated protein kinase-α1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals
Although previous studies have proposed plausible mechanisms of the activation of transforming growth factor-β-activated kinase 1 (TAK1) in inflammatory signals, including Toll-like receptors (TLRs), its activating kinase still remains to be unclear. In the present study, we have provided evidences that AMP-activated protein kinase (AMPK)-α1 has a pivotal role for activating TAK1, and thereby regulate NF-κB-dependent gene expressions in inflammatory signaling mediated by TLR4 and TNF-α stimulation. AMPK-α1 specifically interacts with TAK1 and reciprocally regulates their kinase activities. Upon the stimulation of lipopolysaccharide, AMPK-α1-knockdown (AMPK-) or TAK1-knockdown human monocytic THP-1 cells exhibit a dramatic reduction in the TAK1 or AMPK-α1 kinase activity, respectively, and subsequent suppressions of its downstream signaling cascades, which further leads to inhibitions of NF-κB and thereby productions of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Importantly, the microarray analysis of AMPK- cells revealed a dramatic reduction in the NF-κB-dependent genes induced by TLR4 and TNF-α stimulation, and the observation was in significant correlation with the results of quantitative real-time PCR. Moreover, AMPK- cells are highly sensitive to the TNF-α-induced apoptosis, which is accompanied with dramatic reductions in the NF-κB-dependent and anti-apoptotic genes. As a result, our data demonstrate that AMPK-α1 as an activating kinase of TAK1 has a key role in mediating inflammatory signals triggered by TLR4 and TNF-α
An Anisotropic Ballistic Deposition Model with Links to the Ulam Problem and the Tracy-Widom Distribution
We compute exactly the asymptotic distribution of scaled height in a
(1+1)--dimensional anisotropic ballistic deposition model by mapping it to the
Ulam problem of finding the longest nondecreasing subsequence in a random
sequence of integers. Using the known results for the Ulam problem, we show
that the scaled height in our model has the Tracy-Widom distribution appearing
in the theory of random matrices near the edges of the spectrum. Our result
supports the hypothesis that various growth models in dimensions that
belong to the Kardar-Parisi-Zhang universality class perhaps all share the same
universal Tracy-Widom distribution for the suitably scaled height variables.Comment: 5 pages Revtex, 3 .eps figures included, new references adde
Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures
Cataloged from PDF version of article.We report on the electric field dependent carrier dynamics and optical absorption in nonpolar a-plane GaN-based quantum heterostructures grown on r-plane sapphire, which are surprisingly observed to be opposite to those polar ones of the same materials system and similar structure grown on c-plane. Confirmed by their time-resolved photoluminescence measurements and numerical analyses, we show that carrier lifetimes increase with increasing external electric field in nonpolar InGaN/GaN heterostructure epitaxy, whereas exactly the opposite occurs for the polar epitaxy. Moreover, we observe blue-shifting absorption spectra with increasing external electric field as a result of reversed quantum confined Stark effect in these polar structures, while we observe red-shifting absorption spectra with increasing external electric field because of standard quantum confined Stark effect in the nonpolar structures. We explain these opposite behaviors of external electric field dependence with the changing overlap of electron and hole wavefunctions in the context of Fermi's golden rule. (C) 2011 Optical Society of Americ
Airy processes and variational problems
We review the Airy processes; their formulation and how they are conjectured
to govern the large time, large distance spatial fluctuations of one
dimensional random growth models. We also describe formulas which express the
probabilities that they lie below a given curve as Fredholm determinants of
certain boundary value operators, and the several applications of these
formulas to variational problems involving Airy processes that arise in
physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI
Proceedings: Topics in percolative and disordered systems
- …