1,490 research outputs found

    Differential equations for the KPZ and periodic KPZ fixed points

    Full text link
    The KPZ fixed point is a 2d random field, conjectured to be the universal limiting fluctuation field for the height function of models in the KPZ universality class. Similarly, the periodic KPZ fixed point is a conjectured universal field for spatially periodic models. For both fields, their multi-point distributions in the space-time domain have been computed recently. We show that for the case of the narrow-wedge initial condition, these multi-point distributions can be expressed in terms of so-called integrable operators. We then consider a class of operators that include the ones arising from the KPZ and the periodic KPZ fixed points, and find that they are related to various matrix integrable differential equations such as coupled matrix mKdV equations, coupled matrix NLS equations with complex time, and matrix KP-II equations. When applied to the KPZ fixed points, our results extend previously known differential equations for one-point distributions and equal-time, multi-position distributions to multi-time, multi-position setup

    Recurrence of cervical cancer and its resistance to progestin therapy in a mouse model

    Get PDF
    Studies using K14E6/K14E7 transgenic mice expressing E6 and E7 oncoprotein of human papillomavirus type 16 (HPV16) have demonstrated that estrogen (E2) is required for the genesis and growth of cervical cancer. Our prior study using the same mouse model has showed that progestin drug medroxyprogesterone acetate (MPA) promotes regression of primary cervical cancer. In the present study, we use the same transgenic mouse model to determine whether the cancer recurs after MPA therapy. Cervical cancer recurred even if MPA treatment was continued. Unlike primary cervical cancer, the cancer recurred even in the absence of exogenous E2 when MPA treatment was ceased. Furthermore, recurrent cervical cancer did not fully regress upon MPA treatment. Our results support that MPA fails to completely eliminate primary cervical cancer cells and that remaining cancer cells grow independent of exogenous E2 and are refractory to MP

    Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition

    Full text link
    The one-dimensional totally asymmetric simple exclusion process (TASEP) is considered. We study the time evolution property of a tagged particle in TASEP with the step-type initial condition. Calculated is the multi-time joint distribution function of its position. Using the relation of the dynamics of TASEP to the Schur process, we show that the function is represented as the Fredholm determinant. We also study the scaling limit. The universality of the largest eigenvalue in the random matrix theory is realized in the limit. When the hopping rates of all particles are the same, it is found that the joint distribution function converges to that of the Airy process after the time at which the particle begins to move. On the other hand, when there are several particles with small hopping rate in front of a tagged particle, the limiting process changes at a certain time from the Airy process to the process of the largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure

    Finite time corrections in KPZ growth models

    Full text link
    We consider some models in the Kardar-Parisi-Zhang universality class, namely the polynuclear growth model and the totally/partially asymmetric simple exclusion process. For these models, in the limit of large time t, universality of fluctuations has been previously obtained. In this paper we consider the convergence to the limiting distributions and determine the (non-universal) first order corrections, which turn out to be a non-random shift of order t^{-1/3} (of order 1 in microscopic units). Subtracting this deterministic correction, the convergence is then of order t^{-2/3}. We also determine the strength of asymmetry in the exclusion process for which the shift is zero. Finally, we discuss to what extend the discreteness of the model has an effect on the fitting functions.Comment: 34 pages, 5 figures, LaTeX; Improved version including shift of PASEP height functio

    Airy processes and variational problems

    Full text link
    We review the Airy processes; their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of one dimensional random growth models. We also describe formulas which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulas to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI Proceedings: Topics in percolative and disordered systems

    The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class

    Full text link
    We explain the exact solution of the 1+1 dimensional Kardar-Parisi-Zhang equation with sharp wedge initial conditions. Thereby it is confirmed that the continuum model belongs to the KPZ universality class, not only as regards to scaling exponents but also as regards to the full probability distribution of the height in the long time limit.Comment: Proceedings StatPhys 2

    The k-Point Random Matrix Kernels Obtained from One-Point Supermatrix Models

    Full text link
    The k-point correlation functions of the Gaussian Random Matrix Ensembles are certain determinants of functions which depend on only two arguments. They are referred to as kernels, since they are the building blocks of all correlations. We show that the kernels are obtained, for arbitrary level number, directly from supermatrix models for one-point functions. More precisely, the generating functions of the one-point functions are equivalent to the kernels. This is surprising, because it implies that already the one-point generating function holds essential information about the k-point correlations. This also establishes a link to the averaged ratios of spectral determinants, i.e. of characteristic polynomials

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence

    Full text link
    We provide a comprehensive report on scale-invariant fluctuations of growing interfaces in liquid-crystal turbulence, for which we recently found evidence that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1 dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here we investigate both circular and flat interfaces and report their statistics in detail. First we demonstrate that their fluctuations show not only the KPZ scaling exponents but beyond: they asymptotically share even the precise forms of the distribution function and the spatial correlation function in common with solvable models of the KPZ class, demonstrating also an intimate relation to random matrix theory. We then determine other statistical properties for which no exact theoretical predictions were made, in particular the temporal correlation function and the persistence probabilities. Experimental results on finite-time effects and extreme-value statistics are also presented. Throughout the paper, emphasis is put on how the universal statistical properties depend on the global geometry of the interfaces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful yet geometry-dependent universality of the KPZ class, which governs growing interfaces driven out of equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19 updated & minor changes in text (v3); final version (v4); J. Stat. Phys. Online First (2012

    Characteristic Polynomials of Sample Covariance Matrices: The Non-Square Case

    Full text link
    We consider the sample covariance matrices of large data matrices which have i.i.d. complex matrix entries and which are non-square in the sense that the difference between the number of rows and the number of columns tends to infinity. We show that the second-order correlation function of the characteristic polynomial of the sample covariance matrix is asymptotically given by the sine kernel in the bulk of the spectrum and by the Airy kernel at the edge of the spectrum. Similar results are given for real sample covariance matrices
    • …
    corecore