69 research outputs found
Nociceptin Receptor Is Overexpressed in Non-small Cell Lung Cancer and Predicts Poor Prognosis
Classic opioid receptors, mu (μ), delta (δ), and kappa (κ), have been reported to be expressed in non-small cell lung cancer (NSCLC) cell lines and tumor tissues and to play a role in tumor prognosis. However, the expression and role of the non-classic opioid receptor, nociceptin receptor (NOP) in cancer are unclear. Our hypothesis was that NOP was also highly expressed in NSCLC tumor tissues and this could be correlated with patients' prognostic characters. Expression of NOP was examined in archived cancer tissues from 129 enrolled NSCLC patients by immunohistochemistry and was further analyzed with the patients' outcomes. NOP expression in NSCLC cell lines was also detected. The dataset from Kaplan-Meier Plotter was used to explore the correlation between the levels of NOP mRNA in cancerous tissue and the prognosis of NSCLC patients. Cell functional assays were performed to detect the effect of NOP activation on tumor aggressive furthers. Results showed NOP expression was highly expressed in cancer tissues and human cancer cell lines. NOP expression was not associated with patients' opioid requirement but closely with some clinicopathological indicators which reflected the malignancy. Moreover, NOP staining level was the independent poor prognostic factor for NSCLC patients receiving lobectomy, which was further verified by determining the mRNA expression levels through the online dataset. In vitro experiments revealed that NOP activation promotes the proliferation and invasion of A549 cells via PI3K/Akt signaling pathway. We conclude that NOP is overexpressed in NSCLC and is inversely correlated with patient's postoperative survival
Fungus Pichia kudriavzevii XTY1 and heterotrophic nitrifying bacterium Enterobacter asburiae GS2 cannot efficiently transform organic nitrogen via hydroxylamine and nitrite
Heterotrophic nitrification is a process of organic nitrogen degradation completed by the participation of heterotrophic nitrifying microorganisms, which can accelerate the nitrogen transformation process. However, the current research mainly focuses on heterotrophic nitrifying bacteria and their ammonium degradation capacities. And there is little accumulation of research on fungi, the main force of heterotrophic nitrification, and their capacities to transform organic nitrogen. In this study, novel heterotrophic nitrifying fungus (XTY1) and bacterium (GS2) were screened and isolated from upland soil, and the strains were identified and registered through GenBank comparison. After 24 h single nitrogen source tests and 15N labeling tests, we compared and preliminarily determined the heterotrophic nitrification capacities and pathways of the two strains. The results showed that XTY1 and GS2 had different transformation capacities to different nitrogen substrates and could efficiently transform organic nitrogen. However, the transformation capacity of XTY1 to ammonium was much lower than that of GS2. The two strains did not pass through NH2OH and NO2− during the heterotrophic nitrification of organic nitrogen, and mainly generated intracellular nitrogen and low N2O. Other novel organic nitrogen metabolism pathways may be existed, but they remain to be further validated
Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China
IntroductionSoil microbial communities are critical in regulating grassland biogeochemical cycles and ecosystem functions, but the mechanisms of how environmental factors affect changes in the structural composition and diversity of soil microbial communities in different grassland soil types is not fully understood in northwest Liaoning, China.MethodsWe investigated the characteristics and drivers of bacterial and fungal communities in 4 grassland soil types with 11 sites across this region using high-throughput Illumina sequencing.Results and DiscussionActinobacteria and Ascomycota were the dominant phyla of bacterial and fungal communities, respectively, but their relative abundances were not significantly different among different grassland soil types. The abundance, number of OTUs, number of species and diversity of both bacterial and fungal communities in warm and temperate ecotone soil were the highest, while the warm-temperate shrub soil had the lowest microbial diversity. Besides, environmental factors were not significantly correlated with soil bacterial Alpha diversity index. However, there was a highly significant negative correlation between soil pH and Shannon index of fungal communities, and a highly significant positive correlation between plant cover and Chao1 index as well as Observed species of fungal communities. Analysis of similarities showed that the structural composition of microbial communities differed significantly among different grassland soil types. Meanwhile, the microbial community structure of temperate steppe-sandy soil was significantly different from that of other grassland soil types. Redundancy analysis revealed that soil total nitrogen content, pH and conductivity were important influencing factors causing changes in soil bacterial communities, while soil organic carbon, total nitrogen content and conductivity mainly drove the differentiation of soil fungal communities. In addition, the degree of connection in the soil bacterial network of grassland was much higher than that in the fungal network and soil bacterial and fungal communities were inconsistently limited by environmental factors. Our results showed that the microbial community structure, composition and diversity of different grassland soil types in northwest Liaoning differed significantly and were significantly influenced by environmental factors. Microbial community structure and the observation of soil total nitrogen and organic carbon content can predict the health changes of grassland ecosystems to a certain extent
Different responses of soil fungal and bacterial communities to nitrogen addition in a forest grassland ecotone
IntroductionContinuous nitrogen deposition increases the nitrogen content of terrestrial ecosystem and affects the geochemical cycle of soil nitrogen. Forest-grassland ecotone is the interface area of forest and grassland and is sensitive to global climate change. However, the structure composition and diversity of soil microbial communities and their relationship with soil environmental factors at increasing nitrogen deposition have not been sufficiently studied in forest-grassland ecotone.MethodsIn this study, experiments were carried out with four nitrogen addition treatments (0 kgN·hm−2·a−1, 10 kgN·hm−2·a−1, 20 kgN·hm−2·a−1 and 40 kgN·hm−2·a−1) to simulate nitrogen deposition in a forest-grassland ecotone in northwest Liaoning Province, China. High-throughput sequencing and qPCR technologies were used to analyze the composition, structure, and diversity characteristics of the soil microbial communities under different levels of nitrogen addition.Results and discussionThe results showed that soil pH decreased significantly at increasing nitrogen concentrations, and the total nitrogen and ammonium nitrogen contents first increased and then decreased, which were significantly higher in the N10 treatment than in other treatments (N:0.32 ~ 0.48 g/kg; NH4+-N: 11.54 ~ 13 mg/kg). With the increase in nitrogen concentration, the net nitrogen mineralization, nitrification, and ammoniation rates decreased. The addition of nitrogen had no significant effect on the diversity and structure of the fungal community, while the diversity of the bacterial community decreased significantly at increasing nitrogen concentrations. Ascomycetes and Actinomycetes were the dominant fungal and bacterial phyla, respectively. The relative abundance of Ascomycetes was negatively correlated with total nitrogen content, while that of Actinomycetes was positively correlated with soil pH. The fungal community diversity was significantly negatively correlated with nitrate nitrogen, while the diversity of the bacterial community was significantly positively correlated with soil pH. No significant differences in the abundance of functional genes related to soil nitrogen transformations under the different treatments were observed. Overall, the distribution pattern and driving factors were different in soil microbial communities in a forest-grassland ecotone in northwest Liaoning. Our study enriches research content related to factors that affect the forest-grassland ecotone
Association between carotid intima-media thickness and index of central fat distribution in middle-aged and elderly Chinese
Vertical distribution patterns and drivers of soil bacterial communities across the continuous permafrost region of northeastern China
Abstract
Background
Soil microorganisms in the thawing permafrost play key roles in the maintenance of ecosystem function and regulation of biogeochemical cycles. However, our knowledge of patterns and drivers of permafrost microbial communities is limited in northeastern China. Therefore, we investigated the community structure of soil bacteria in the active, transition and permafrost layers based on 90 soil samples collected from 10 sites across the continuous permafrost region using high-throughput Illumina sequencing.
Results
Proteobacteria (31.59%), Acidobacteria (18.63%), Bacteroidetes (9.74%), Chloroflexi (7.01%) and Actinobacteria (6.92%) were the predominant phyla of the bacterial community in all soil layers; however, the relative abundances of the dominant bacterial taxa varied with soil depth. The bacterial community alpha-diversity based on the Shannon index and the phylogenetic diversity index both decreased significantly with depth across the transition from active layer to permafrost layer. Nonmetric multidimensional scaling analysis and permutation multivariate analysis of variance revealed that microbial community structures were significantly different among layers. Redundancy analysis and Spearman’s correlation analysis showed that soil properties differed between layers such as soil nutrient content, temperature and moisture mainly drove the differentiation of bacterial communities.
Conclusions
Our results revealed significant differences in bacterial composition and diversity among soil layers. Our findings suggest that the heterogeneous environmental conditions between the three soil horizons had strong influences on microbial niche differentiation and further explained the variability of soil bacterial community structures. This effort to profile the vertical distribution of bacterial communities may enable better evaluations of changes in microbial dynamics in response to permafrost thaw, which would be beneficial to ecological conservation of permafrost ecosystems.
</jats:sec
Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains
A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets
- …
