4 research outputs found
Small scale CO2 based trigeneration plants in heat recovery applications: A case study for residential sector in northern Italy
This study investigates the potential of trigeneration systems utilizing CO2-based power cycles to harness hightemperature excess heat. Various CO2-based cycles are proposed, comprising pure CO2 and CO2-mixture, emphasizing integration into district heating and cooling networks. Given the non-isothermal heat rejection of CO2-based cycles, performance maps for absorption chillers at different thermal levels and temperature drop of the heat source are generated. These maps are beneficial not only for the current study but also for generic applications. Various cycle layouts are studied, employing strategies to maximize overall electrical efficiency, electrical power output, or thermal production, starting from available high-grade heat above 500 degrees C. Depending on the specific cycle layout and strategy, the optimal cycle-thermal user coupling is evaluated. The economic and environmental viability of the proposed solution is evaluated in comparison to an existing case-study in northern Italy where the exhaust gases of 10 MWel gas turbines are currently exploited for district heating purposes and centralized vapour-compression chillers meet the residential cooling demand. Compared to the case-study, the adoption of a simple recuperative CO2-mixture bottoming cycle, at a minimum cycle temperature of 70 degrees C, allows not only a primary energy saving of 16 % but also an 8 % reduction of levelized cost of electricity
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
In the pathway towards decarbonization, hydrogen can provide valid support in different sectors, such as transportation, iron and steel industries, and domestic heating, concurrently reducing air pollution. Thanks to its versatility, hydrogen can be produced in different ways, among which steam reforming of natural gas is still the most commonly used method. Today, less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production, membrane reactor technology has the potential, especially at a small scale, to efficiently convert biogas into green hydrogen, leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work, a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature, pressures, catalyst and steam amounts, and inlet temperature. Moreover, the influence of different membrane lengths, numbers, and pitches is investigated. From the results, guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity, operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C, going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar, a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst, it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions, it is worth mentioning that by adding membranes and maintaining the same spacing, it is possible to increase hydrogen production proportionally to the membrane area, maintaining the same HRF