29 research outputs found

    Preparation of Phase Homogeneous Mn-Zn Ferrite Powder by Spray Pyrolysis

    Get PDF
    Two kinds of aqueous precursor solutions are used to synthesize Mn-Zn ferrite powders: (i) nitrate (NO) precursor-derived from solutions of Mn(NO3)2, Zn(NO3)2, and Fe(NO3)3; and (ii) acetate (AC) precursor-derived from solutions of Mn(CH3COOO)2, Zn(CHCH3COOO)2, and Fe(NO3)3. The composition of the powders synthesized from the precursor AC is very uniform, whereas powders derived from the precursor NO have Mn and Zn segregated on the particle surfaces. In addition, the powders synthesized from precursor AC are solid spherical particles with fine porosity, whereas many hollow and fragmented particles are observed in the powder derived from precursor NO. Overall, the properties of Mn-Zn ferrite cores prepared from the precursor AC are superior to those prepared from the precursor NO. The reasons for the differences are explained and described in detail. The AC precursor powders synthesized by spray pyrolysis produced Mn-Zn ferrite cores with good magnetic properties

    Intelligent Manufacturing Systems in COVID-19 Pandemic and Beyond:Framework and Impact Assessment

    Get PDF
    Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks. The intelligent manufacturing (IM) systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms. The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network, which mitigates the severity of industrial chain disruption. In this study, we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks. Considering the constraints of the IM resources, we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic

    Inhibition of Nur77 expression and translocation by compound B6 reduces ER stress and alleviates cigarette smoke-induced inflammation and injury in bronchial epithelial cells

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide with inflammation and injury in airway epithelial cells. However, few treatment options effectively reduce severity. We previously found that Nur77 is involved in lipopolysaccharide-induced inflammation and injury of lung tissue. Here, we established an in vitro model of COPD-related inflammation and injury in 16-HBE cells induced by cigarette smoke extract (CSE). In these cells, Nur77 expression and localization to the endoplasmic reticulum (ER) increased following CSE treatment, as did ER stress marker (BIP, ATF4, CHOP) expression, inflammatory cytokine expression, and apoptosis. The flavonoid derivative, named B6, which was shown to be a modulator of Nur77 in previous screen, molecular dynamics simulation revealed that B6 binds strongly to Nur77 through hydrogen bonding and hydrophobic interactions. Treating CSE-stimulated 16-HBE cells with B6 resulted in a reduction of both inflammatory cytokine expression and secretion, as well as attenuated apoptosis. Furthermore, B6 treatment resulted in a decrease in Nur77 expression and translocation to the ER, which was accompanied by a concentration-dependent reduction in the expression of ER stress markers. Meanwhile, B6 played a similar role in CSE-treated BEAS-2B cells. These combined effects suggest that B6 could inhibit inflammation and apoptosis in airway epithelial cells after cigarette smoke stimulation, and support its further development as a candidate intervention for treating COPD-related airway inflammation

    Pharmacological therapy for stable chronic obstructive pulmonary disease

    No full text
    Abstract In recent years, emphasis has shifted from preventing and treating chronic obstructive pulmonary disease (COPD) to early prevention, early treatment, and disease stabilization, with the main goal of improving patients’ quality of life and reducing the frequency of acute exacerbations. This review summarizes pharmacological therapies for stable COPD

    Greentelligence: Smart Manufacturing for a Greener Future

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/173946/1/10033_2021_Article_656.pd

    Human Digital Twin (HDT) Driven Human-Cyber-Physical Systems: Key Technologies and Applications

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/173947/1/10033_2022_Article_680.pd

    Comprehensive Management Strategy of Underground Space Development in China

    No full text
    Nowadays, there is a strong demand for underground space development in China. Meanwhile, underground space utilization has shown the characteristics of high construction difficulty, long construction period, high cost, and complex social impacts. A systematic and reliable management system for underground space development has not yet been established. Therefore, it is urgent to carry out strategic study on the comprehensive management of underground space development from both theoretical and practical aspects. By analyzing the current situation of underground space development in China, the problems in the comprehensive management of underground space are discussed from the aspects of laws and regulations, high-level design, management system, geological survey, equipment, information resource, intelligent level, and comprehensive benefit. Furthermore, the development strategy and countermeasures for underground space development in China are proposed. Considering long-term strategic objectives and development principles, the future main tasks include the establishment of a comprehensive management system, improvement in management capacity, intelligentization of space management, and reinforcement of emergency response safety management. Specifically, a national unified coordination system needs to be established for underground space comprehensive management; relevant laws and regulations, standards, and regulatory evaluation systems should be improved; technologies and professionals should be encouraged for key equipment development; and urban underground space survey and information management should be promoted

    Intelligent Manufacturing Systems in COVID-19 Pandemic and Beyond: Framework and Impact Assessment

    Full text link
    Abstract Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufacturing system which incurs severe disruptions and complex issues to industrial networks. The intelligent manufacturing (IM) systems are promising to create a safe working environment by using the automated manufacturing assets which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms. The relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the network, which mitigates the severity of industrial chain disruption. In this study, we create a novel intelligent manufacturing framework for the production recovery under the pandemic and build an assessment model to evaluate the impacts of the IM technologies on industrial networks. Considering the constraints of the IM resources, we formulate an optimization model to schedule the allocation of IM resources according to the mutual market demands and the severity of the pandemic.http://deepblue.lib.umich.edu/bitstream/2027.42/173944/1/10033_2020_Article_476.pd

    Understanding the Evolution and Applications of Intelligent Systems via a Tri-X Intelligence (TI) Model

    No full text
    The evolution and application of intelligence have been discussed from perspectives of life, control theory and artificial intelligence. However, there has been no consensus on understanding the evolution of intelligence. In this study, we propose a Tri-X Intelligence (TI) model, aimed at providing a comprehensive perspective to understand complex intelligence and the implementation of intelligent systems. In this work, the essence and evolution of intelligent systems (or system intelligentization) are analyzed and discussed from multiple perspectives and at different stages (Type I, Type II and Type III), based on a Tri-X Intelligence model. Elemental intelligence based on scientific effects (e.g., conscious humans, cyber entities and physical objects) is at the primitive level of intelligence (Type I). Integrated intelligence formed by two-element integration (e.g., human-cyber systems and cyber-physical systems) is at the normal level of intelligence (Type II). Complex intelligence formed by ternary-interaction (e.g., a human-cyber-physical system) is at the dynamic level of intelligence (Type III). Representative cases are analyzed to deepen the understanding of intelligent systems and their future implementation, such as in intelligent manufacturing. This work provides a systematic scheme, and technical supports, to understand and develop intelligent systems

    Toward New-Generation Intelligent Manufacturing

    No full text
    Intelligent manufacturing is a general concept that is under continuous development. It can be categorized into three basic paradigms: digital manufacturing, digital-networked manufacturing, and new-generation intelligent manufacturing. New-generation intelligent manufacturing represents an in-depth integration of new-generation artificial intelligence (AI) technology and advanced manufacturing technology. It runs through every link in the full life-cycle of design, production, product, and service. The concept also relates to the optimization and integration of corresponding systems; the continuous improvement of enterprises’ product quality, performance, and service levels; and reduction in resources consumption. New-generation intelligent manufacturing acts as the core driving force of the new industrial revolution and will continue to be the main pathway for the transformation and upgrading of the manufacturing industry in the decades to come. Human-cyber-physical systems (HCPSs) reveal the technological mechanisms of new-generation intelligent manufacturing and can effectively guide related theoretical research and engineering practice. Given the sequential development, cross interaction, and iterative upgrading characteristics of the three basic paradigms of intelligent manufacturing, a technology roadmap for “parallel promotion and integrated development” should be developed in order to drive forward the intelligent transformation of the manufacturing industry in China. Keywords: Advanced manufacturing, New-generation intelligent manufacturing, Human-cyber-physical system, New-generation AI, Basic paradigms, Parallel promotion, Integrated developmen
    corecore