18 research outputs found

    Automaticity in processing spatial-numerical associations: Evidence from a perceptual orientation judgment task of Arabic digits in frames.

    Get PDF
    Human adults are faster to respond to small/large numerals with their left/right hand when they judge the parity of numerals, which is known as the SNARC (spatial-numerical association of response codes) effect. It has been proposed that the size of the SNARC effect depends on response latencies. The current study introduced a perceptual orientation task, where participants were asked to judge the orientation of a digit or a frame surrounding the digit. The present study first confirmed the SNARC effect with native Chinese speakers (Experiment 1) using a parity task, and then examined whether the emergence and size of the SNARC effect depended on the response latencies (Experiments 2, 3, and 4) using a perceptual orientation judgment task. Our results suggested that (a) the automatic processing of response-related numerical-spatial information occurred with Chinese-speaking participants in the parity task; (b) the SNARC effect was also found when the task did not require semantic access; and (c) the size of the effect depended on the processing speed of the task-relevant dimension. Finally, we proposed an underlying mechanism to explain the SNARC effect in the perceptual orientation judgment task

    Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    No full text
    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other β€œomics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research

    EFEMP1 in Direct Inguinal Hernia: correlation with TIMP3 and Regulation Toward Elastin Homoeostasis as Well as Fibroblast Mobility

    No full text
    Aim This basic research aimed to detect the inner-correlation of EGF containing fibulin extracellular matrix protein 1 (EFEMP1), TIMP metallopeptidase inhibitor 3 (TIMP3), matrix metalloprotease 9 (MMP9), elastin (ELN) in direct inguinal hernia (IH), and their effect on fibroblasts motility. Methods Transversalis fascia samples from 20 direct IH patients and 20 varicocele (served as controls) patients were collected for detecting EFEMP1, TIMP3, MMP9 and ELN expressions by immunohistochemistry assay. Fibroblasts L929 cells were transfected with EFEMP1 overexpression plasmid or knock-down plasmid to investigate the influence of EFEMP1 dysregulation on L929 cell migration, invasion, TIMP3, MMP9 and ELN expressions. Additionally, rescue experiments were performed by adding TIMP3 knockdown plasmid to the EFEMP1-overexpressed L929 cells. Results Transversalis fascia EFEMP1, TIMP3 and ELN expressions were decreased, but MMP9 expression was increased in IH patients compared with controls. In IH patients, EFEMP1 was not correlated with TIMP3, but positively correlated with ELN and negatively correlated with MMP9; TIMP3 negatively correlated with MMP9, but positively correlated with ELN. Overexpression of EFEMP1 did not affect TIMP3 expression but increased ELN expression and decreased MMP9 expression in L929 cells. In addition, EFEMP1 suppressed L929 cell migration and invasion. The following rescue experiments indicated that silencing TIMP3 attenuated the effect of EFEMP1 overexpression on MMP9 and ELN expressions as well as the effect of EFEMP1 overexpression on cell migration and invasion in L929 cells. Conclusions EFEMP1 is downregulated in direct IH, and it regulates ELN homoeostasis as well as fibroblast mobility via interacting with TIMP3

    A nucleotide metabolite controls stress-responsive gene expression and plant development.

    Get PDF
    Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3',5'-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3'-phosphoadenosine-5'-phosphate (PAP), yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt toxicity target in Arabidopsis

    Informer-WGAN: High Missing Rate Time Series Imputation Based on Adversarial Training and a Self-Attention Mechanism

    No full text
    Missing observations in time series will distort the data characteristics, change the dataset expectations, high-order distances, and other statistics, and increase the difficulty of data analysis. Therefore, data imputation needs to be performed first. Generally, data imputation methods include statistical imputation, regression imputation, multiple imputation, and imputation based on machine learning methods. However, these methods currently have problems such as insufficient utilization of time characteristics, low imputation efficiency, and poor performance under high missing rates. In response to these problems, we propose the informer-WGAN, a network model based on adversarial training and a self-attention mechanism. With the help of the discriminator network and the random missing rate training method, the informer-WGAN can efficiently solve the problem of multidimensional time series imputation. According to the experimental results under different missing rates, the informer-WGAN model achieves better imputation results than the original informer on two datasets. Our model also shows excellent performance on time series imputation of the key parameters of a spacecraft control moment gyroscope (CMG)

    The Maize AP2/EREBP Transcription Factor ZmEREB160 Enhances Drought Tolerance in Arabidopsis

    No full text
    Drought is a main factor affecting plant growth and crop production. APETALA2/Ethylene Responsive Element Binding Protein (AP2/EREBP) transcription factors (TFs) are involved in the response to abiotic stress and their functions in ABA signaling and the regulation of drought response have been intensively studied. However, AP2/EREBP TFs have been limited in the maize. The objective of our study was to identify the function of the novel maize AP2/EREBP gene ZmEREB160. Expression levels analysis in maize revealed that ZmEREB160 is significantly induced by PEG6000, NaCl and ABA treatment. ZmEREB160 localized to the nucleus when transiently expressed in Arabidopsis leaf protoplasts. ZmEREB160 activated the reporter gene and exhibited transcriptional activation activity in yeast cells. When overexpression of ZmEREB160 in Arabidopsis significantly enhanced tolerance to osmotic and ABA stress, overexpressed seedlings were longer roots under ABA and mannitol treatments compared with wild type. In addition, overexpression of ZmEREB160 Arabidopsis seedlings was found to elevate survival rate compared with wild type plants under drought stress. During the drought treatment, qRT-PCR assays showed that the expression levels of ABA/drought stress-related genes, ABI2, ABI5, COR15, DREB2A and RD29B were up-regulated in ZmEREB160 transgenic plants, transgenic plants accumulated more proline content than wild type plants. These results indicate that ZmEREB160 functions in response to drought and ABA stresses, and participates in ABA signaling pathway and may enhance drought tolerance

    Function analysis of ZmNAC33, a positive regulator in drought stress response in Arabidopsis

    No full text
    Drought significantly affects plant growth and has devastating effects on crop production, NAC transcription factors respond to abiotic stresses by activating gene expression. In this study, a maize NAC transcription factor, ZmNAC33, was cloned and characterized its function in Arabidopsis. Transient transformation in Arabidopsis leaves mesophyll protoplasts and trans-activation assays in yeast showed that ZmNAC33 was localized in the nucleus and had transactivation activity. qRT-PCR analysis showed that ZmNAC33 in maize was induced by drought, high salinity and abscisic acid (ABA) stress. Promoter analysis identified multiple stress-related cis-acting elements in the promoter region of ZmNAC33. In ZmNAC33 transgenic Arabidopsis, germination rates were higher than in wild type plants under ABA and osmotic stress at the germination stage, and overexpression lines exhibited higher survival rates and higher antioxidant enzyme activities compared with wild type under drought stress. These results indicate that ZmNAC33 actes as a positive regulator in drought tolerance in plants
    corecore