35 research outputs found

    Perpendicular Block Copolymer Microdomains in High Aspect Ratio Templates

    Get PDF
    Perpendicular orientation of lamellar microdomains in a high interaction parameter block copolymer was obtained within high aspect ratio gratings functionalized with a preferential sidewall brush. The experiments used polystyrene-block-polydimethylsiloxane (PS-b-PDMS) with molecular weight 43 kg/mol within trenches made using interference lithography. The perpendicular alignment was obtained for both thermal and solvent annealing, using three different solvent vapors, for a range of film thicknesses and trench widths. A platinum (Pt) layer at the base of the trenches avoided the formation of a wetting layer, giving perpendicular orientation at the substrate surface. The results are interpreted using self-consistent field theory simulation and a Ginzburg–Landau analytic model to map the energies of lamellae of different orientations as a function of the grating aspect ratio and the surface energies of the sidewalls and top and bottom surfaces. The model results agree with the experiment and provide a set of guidelines for obtaining perpendicular microdomains within topographic features

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 ÎĽm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks

    Block copolymer self-assembly and templating strategies

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references.Block copolymers microphase separate to form periodic patterns with period of a few nm and above without the need for lithographic guidance. These self-assembled nanostructures have a variety of bulk geometries (alternating lamellae, gyroids, cylinder or sphere arrays, tiling patterns, core-shell structures) depending on the molecular architecture of the polymer and the volume fraction of its blocks. And in thin films, surface interaction and commensurability effect influence the self-assembly and result in more diverse morphologies including hexagonal-packed perforated lamellae, square array of holes. The progress of self-assembly can be tracked in situ using Grazing Incidence Small Angle X-ray Scattering, and the annealed morphology can be revealed in 3D using TEM tomography. Moreover, non-bulk morphologies can be produced, the ordering of the microdomains can be improved and their locations directed using various templates and processing strategies. The blocks can themselves constitute a functional material, such as a photonic crystal, or they can be used as a mask to pattern other functional materials, functionalized directly by various chemical approaches, or used as a scaffold to assemble nanoparticles or other nanostructures. Block copolymers therefore offer tremendous flexibility in creating nanostructured materials with a range of applications in microelectronics, photovoltaics, filtration membranes and other devices.by Wubin Bai.Ph. D

    Investigation on Parameter Calibration Method and Mechanical Properties of Root-Reinforced Soil by DEM

    No full text
    The behavior of root-soil system has raised more and more attention in both ecological and geotechnical fields. In this study, a two-dimensional discrete element method is employed using PFC2D to simulate the root-reinforced soil. The root system is mimicked by chains of bonded discs, while the soil is modeled by granular particles. The tensile strength of the root is modeled by interdiscs’ bonding strength. Three laboratory tests were studied to calibrate the micromechanical parameters of DEM. Finally, direct shear tests on rooted soil are simulated to investigate the influence of different root characteristics on the root reinforcement effect

    Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion

    No full text
    Biomass, as a renewable energy source, is available worldwide, is carbon neutral, and can be converted to various types of products depending on the market and on the specific applications. Among different technologies of biomass utilization, thermochemical conversion of biomass is the most efficient method with the shortest time scale of the process. Thermochemical conversion can be used to produce gas or liquid fuels, and it can be used for direct production of heat and electricity. Biomass thermochemical conversion is an active and fast growing field of research. New experimental methods with high spatial and temporal resolution such as laser diagnostics are being introduced, and numerical modeling of the physical and chemical details in biomass conversion is being conducted. In this review, we aim to provide an overview of the recent activities in the field of thermochemical conversion of biomass. Important parameters in the large scale conversion systems, such as temperature distribution, overall conversion rate of fuel, and distribution of different species, are strongly connected to the processes that occur on the scale of a single particle. Understanding the link between transport phenomena, chemical kinetics, and physical transformation on single particle scale can help to unravel issues such as emission and efficiency on the large scale. Hence, the focus of this review is on the single biomass particle, relevant to combustion and gasification systems. Special attention is paid to high fidelity numerical models and state-of-the-art experimental techniques that have been developed or employed over recent years to understand different aspects of biomass thermochemical conversion
    corecore