53 research outputs found

    Heat Transfer Correlations of Supercritical Fluids

    Get PDF
    The drastic changes of thermophysical properties in the pseudo-critical region of supercritical fluids bring very big challenges to the traditional Dittus-Boelter-type heat transfer correlations. In this chapter, we will talk about the principles and applications of two kinds of heat transfer correlations of supercritical fluids: the empirical type and the semiempirical type. For the empirical correlations, the modification methods taking into account the variable properties and body force effects will be introduced. We will focus on the proposal of nondimensional parameters describing the buoyancy effect and flow acceleration; while for the semiempirical ones, we mainly talk about the new kind of correlation which is based on the momentum and energy conservations in the mixed convective flow

    Local strategies for China's carbon mitigation: An investigation of Chinese city-level CO2 emissions

    Get PDF
    This paper provides a systematic analysis that identifies the driving forces of carbon dioxide (CO2) emissions of 286 Chinese prefecture-level cities in 2012. The regression analysis confirms the economic scale and structure effects on cities' CO2 emissions in China. If China's annual economic growth continues at the rate of 7%, CO2 emissions will increase by about 6% annually. In addition, climate conditions, urbanization and public investment in R&D are identified as important driving forces to increase the CO2 emissions of Chinese cities. While an increment of the urbanization rate by 1% increases the CO2 emissions by about 0.9%; An increase in R&D investment by 1% can help reduce CO2 emissions by 0.21%. As cities in our study vary greatly based on their industry composition, development stage and geographical location, the patterns of their CO2 emissions are also variable. Our study improves the comprehensiveness and accuracy of previous carbon accounting method by distinguishing the scope 1 and scope 2 CO2 emissions and establishing a high spatial resolution dataset of CO2 emissions (CHRED). The analysis covers almost all Chinese prefectural cities and derives useful implications for China's low carbon development

    Physics of Cohesive Sediment Flocculation and Transport: State-of-the-Art Experimental and Numerical Techniques

    Get PDF
    Due to climate change, sea level rise and anthropogenic development, coastal communities have been facing increasing threats from flooding, land loss, and deterioration of water quality, to name just a few. Most of these pressing problems are directly or indirectly associated with the transport of cohesive fine-grained sediments that form porous aggregates of particles, called flocs. Through their complex structures, flocs are vehicles for the transport of organic carbon, nutrients, and contaminants. Most coastal/estuarine models neglect the flocculation process, which poses a considerable limitation of their predictive capability. We describe a set of experimental and numerical tools that represent the state-of-the-art and can, if combined properly, yield answers to many of the aforementioned issues. In particular, we cover floc measurement techniques and strategies for grain-resolving simulations that can be used as an accurate and efficient means to generate highly-resolved data under idealized conditions. These data feed into continuum models in terms of population balance equations to describe the temporal evolution of flocs. The combined approach allows for a comprehensive investigation across the scales of individual particles, turbulence and the bottom boundary layer to gain a better understanding of the fundamental dynamics of flocculation and their impact on fine-grained sediment transport

    A numerical study on helical vortices induced by a short twisted tape in a circular pipe

    Get PDF
    AbstractHelical vortices, as one kind of secondary flows, are recently observed downstream of the short twisted tape. The behaviors of vortices, which have significant effects on the efficiency of twisted tape, are not well understood. As such, the formation and development of helical vortices induced by the short twisted tape are studied numerically. The results show that two symmetrical stable helical vortices are present downstream of the twisted tape. The values of radial velocities cannot be neglected due to the presence of the vortices. The vortices form in the twisted tape and remain the structure downstream of the twisted tape. Torsion promotes the formation of helical vortices. The intensities of helical vortices decay along the streamwise direction. With the increasing Reynolds numbers, the intensities of helical vortices increase, and the trend is in agreement with the swirl intensities. The intensities of helical vortices decay slowly compared with the intensities of swirling flow

    Deformation, motion and adhesion of complex droplets under flow

    No full text

    Improved CO 2

    No full text

    Experiment and Numerical Simulation on Gas-Liquid Annular Flow through a Cone Sensor

    No full text
    The cone meter has been paid increasing attention in wet gas measurement, due to its distinct advantages. However, the cone sensor, which is an essential primary element of the cone meter, plays a role in the measurement of wet gas flow that is important, but not fully understood. In this article, we investigate the gas-liquid annular flow through a cone sensor by experiment and numerical simulation. Emphasis is put on the influences of pressure recovery characteristics and flow structure, and how they are affected by the cone sensor. The results show that the vortex length is shortened in gas-liquid annular flow, compared with that in single-phase gas flow. The pressure recovery length is closely related with the vortex length, and shorter vortex length leads to shorter pressure recovery length. The gas-liquid distribution suggests that flow around the apex of back-cone is very stable, little liquid is entrained into the vortex, and no liquid appears around the low pressure tapping, which makes a more stable pressure at the apex of cone sensor feasible. This finding highlights the importance of obtaining the low pressure from the back-cone apex, which should be recommended in the multiphase flow measurement. Our results may help to guide the optimization of the cone sensor structure in the wet gas measurement

    Molecular Dynamics Study on the Effect of Surface Hydroxyl Groups on Three-Phase Wettability in Oil-Water-Graphite Systems

    No full text
    In this paper, a hydroxylated graphite surface is generated as a hydrophilic oleophobic material for the application of oil-water separation, and the effects of hydroxyl density on the three-phase wettability are studied in oil-water-graphite systems. We analyze the adsorption of water molecules on the hydroxylated surfaces and obtain the relationship between water-oil-solid interfacial properties and the hydroxyl density, which results from the synthetic effects of the orientation of molecules and hydrogen bonds. With the increase of hydroxyl density, the water-solid contact angle first decreases rapidly, and then remains constant. The density of the hydrogen bond formed between hydroxyls and water molecules in the adsorption layer can explain the regularity of the three-phase wettability. The orientation of the water molecules in the adsorption layer shows insignificant variation, owing to the hydrogen bond network formed between the water molecules; thus, little change is observed in the hydrogen bond density in the adsorption layer
    • …
    corecore