17 research outputs found

    Induction of humoral and cellular immune responses against the HIV-1 envelope protein using γ-retroviral virus-like particles

    Get PDF
    This study evaluates the immunogenicity of the HIV envelope protein (env) in mice presented either attached to γ-retroviral virus-like-particles (VLPs), associated with cell-derived microsomes or as solubilized recombinant protein (gp160). The magnitude and polyfunctionality of the cellular immune response was enhanced when delivering HIV env in the VLP or microsome form compared to recombinant gp160. Humoral responses measured by antibody titres were comparable across the groups and low levels of antibody neutralization were observed. Lastly, we identified stronger IgG2a class switching in the two particle-delivered antigen vaccinations modalities compared to recombinant gp160

    Change of Tropism of SL3-2 Murine Leukemia Virus, Using Random Mutational Libraries

    No full text
    SL3-2 is a polytropic murine leukemia virus with a limited species tropism. We cloned the envelope gene of this virus, inserted it into a bicistronic vector, and found that the envelope protein differs from other, similar envelope proteins that also utilize the polytropic receptor (Xpr1) in that it is severely impaired in mediating infection of human and mink cells. We found that two adjacent amino acid mutations (G212R and I213T), located in a previously functionally uncharacterized segment of the surface subunit, are responsible for the restricted tropism of the SL3-2 wild-type envelope. By selection from a two-codon library, several hydrophobic amino acids at these positions were found to enable the SL3-2 envelope to infect human TE 671 cells. In particular, an M212/V213 mutant had a titer at least 6 orders of magnitude higher than that of the wild-type envelope for human TE 671 cells and infected human, mink, and murine cells with equal efficiencies. Notably, these two amino acids are not found at homologous positions in known murine leukemia virus isolates. Functional analysis and library selection were done on the basis of sequence and tropism analyses of the SL3-2 envelope gene. Similar approaches may be valuable in the design and optimization of retroviral envelopes with altered tropisms for biotechnological purposes

    Coupling of receptor interference and a host-dependent post-binding entry deficiency in a gammaretroviral envelope protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SL3-2 is a unique polytropic murine gammaretroviral isolate that is only able to infect murine cells. We have previously shown that two mutations R212G and T213I located on the surface of the receptor binding domain in a region designated the VR3 loop can alter the species tropism of this envelope protein. This location suggests that the VR3 loop composition has an influence on receptor interaction and thereby affects binding as well as superinfection resistance. In order to investigate this further, we have studied the binding and interference patterns of the SL3-2 envelope and its mutants.</p> <p>Results</p> <p>We find unexpectedly that wild type SL3-2 envelope binds equally well to both permissive and non-permissive cells, indicating a post binding defect when interacting with the human Xpr1. Using replication competent viruses containing envelopes from SL3-2 or its mutants we find that the same amino acid mutations can dramatically alter the interference profile of this polytropic ENV, suggesting that the same amino acid changes that cause the post binding defect also influence interaction with the receptor.</p> <p>Conclusions</p> <p>The envelope protein of SL3-2 MLV shows an entry defect on non-murine cells. This is coupled to a dramatically reduced ability to interfere with entry of other polytropic viruses. Two point mutations in the VR3 loop of the receptor binding domain of this envelope result both in a much increased interference ability and in removing the post-binding defect on non-murine cells, suggesting that both of these phenotypes are a consequence of insufficient interaction between the envelope and the receptor</p

    Cellular uptake and membrane-destabilising properties of a-peptide/ß-peptoid chimeras:lessons for the design of new cell-penetrating peptides

    No full text
    AbstractNovel peptidomimetic backbone designs with stability towards proteases are of interest for several pharmaceutical applications including intracellular delivery. The present study concerns the cellular uptake and membrane-destabilising effects of various cationic chimeras comprised of alternating N-alkylated β-alanine and α-amino acid residues. For comparison, homomeric peptides displaying octacationic functionalities as well as the Tat47–57 sequence were included as reference compounds. Cellular uptake studies with fluorescently labelled compounds showed that guanidinylated chimeras were taken up four times more efficiently than Tat47–57. After internalisation, the chimeras were localised primarily in vesicular compartments and diffusively in the cytoplasm. In murine NIH3T3 fibroblasts, the chimeras showed immediate plasma membrane permeabilising properties, which proved highly dependent on the chimera chain length, and were remarkably different from the effects induced by Tat47–57. Finally, biophysical studies on model membranes showed that the chimeras in general increase the permeability of fluid phase and gel phase phosphatidylcholine (PC) vesicles without affecting membrane acyl chain packing, which suggests that they restrict lateral diffusion of the membrane lipids by interaction with phospholipid head groups. The α-peptide/β-peptoid chimeras described herein exhibit promising cellular uptake properties, and thus represent proteolytically stable alternatives to currently known cell-penetrating peptides
    corecore