4,046 research outputs found
A model of non-perturbative gluon emission in an initial state parton shower
We consider a model of transverse momentum production in which
non-perturbative smearing takes place throughout the perturbative evolution, by
a simple modification to an initial state parton shower algorithm. Using this
as the important non-perturbative ingredient, we get a good fit to data over a
wide range of energy. Combining it with the non-perturbative masses and cutoffs
that are a feature of conventional parton showers also leads to a reasonable
fit. We discuss the extrapolation to the LHC.Comment: 14 pages, 6 figures; version accepted by JHE
Pump-Probe Experiments on the Single-Molecule Magnet Fe8 : Measurement of Excited Level Lifetimes
We present magnetization measurements on the single molecule magnet Fe8 in
the presence of pulsed microwave radiation. A pump-probe technique is used with
two microwave pulses with frequencies of 107 GHz and 118 GHz and pulse lengths
of several nanoseconds to study the spin dynamics via time-resolved
magnetization measurements using a Hall probe magnetometer. We find evidence
for short spin-phonon relaxation times of the order of one microsecond. The
temperature dependence of the spin-phonon relaxation time in our experiments is
in good agreement with previously published theoretical results. We also
established the presence of very short energy diffusion times, that act on a
timescale of about 70 ns.Comment: submitted to Phys. Rev. Lett. (01 March 2007
Cycling in the Crescent City: An exploration of the spatial variation in bicycle commuting in New Orleans
This thesis examines the spatial variation in bicycle commuting across New Orleans. It identifies where in the city bicycle commuting is most and least prevalent. It also explores factors that are promoting and discouraging utilitarian bicycling. A review of existing literature on variables found to influence transportation bicycling is conducted, and a survey is disseminated to residents across the city to determine some of the motivations for and obstacles to transportation bicycling locally. Additionally, case studies are compiled pertaining to two neighborhoods falling on opposite ends of the bike-commute spectrum. These include analysis of socio-economic and demographic data; an evaluation of the built environment using maps and field observation; and interviews to assess residents’ attitudes about and experiences with transportation bicycling. In the end, this thesis should be helpful in pinpointing variables influencing bicycle commute rates and in determining the types of policies and investments that may be most effective in encouraging more bicycling in New Orleans and across the country
Quantitative detection of atropine-delayed gastric emptying in the horse by the <sup>13</sup>C-octanoic acid breath test
The <sup>13</sup>C-octanoic acid breath test has been correlated significantly to radioscintigraphy for measurement of gastric emptying indices in healthy horses. The objective of this study was to investigate the validity of the test for measurement of equine delayed gastric emptying, prior to its potential clinical application for this purpose. A model of atropine- induced gastroparesis was used. Gastric emptying rate was measured twice in 8 horses using concurrent radioscintigraphy and/or breath test after treatment i.v. with either atropine (0.035 mg/kg bwt) or saline in randomised order. Analysis of both data sets demonstrated that the atropine treatment had caused a significant delay in gastric emptying rate. Paired breath test data showed an atropine-induced delay in gastric half-emptying time t(1/2)), with no overlap in the 99% Cl range (P<0.001). Significant correlations were found between scintigraphy and <sup>13</sup>C-octanoic acid breath test for calculation of both t(1/2) (P<0.01) and lag phase duration (P<0.05) in the atropine-delayed emptying results. The mean (s.d.) bias in breath test t(1/2) when compared with scintigraphy was 1.78 (0.58) h. The results demonstrated that the <sup>13</sup>C-octanoic acid breath test was an effective diagnostic modality for the measurement of equine delayed gastric emptying. The technique offers advantages to existing methods for clinical investigation, as it is noninvasive, not radioactive, quantitative and requires minimal equipment or training to perform
Perfect discretization of reparametrization invariant path integrals
To obtain a well defined path integral one often employs discretizations. In the case of gravity and reparametrization invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly--free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams
Influence of antisymmetric exchange interaction on quantum tunneling of magnetization in a dimeric molecular magnet Mn6
We present magnetization measurements on the single molecule magnet Mn6,
revealing various tunnel transitions inconsistent with a giant-spin
description. We propose a dimeric model of the molecule with two coupled spins
S=6, which involves crystal-field anisotropy, symmetric Heisenberg exchange
interaction, and antisymmetric Dzyaloshinskii-Moriya exchange interaction. We
show that this simplified model of the molecule explains the experimentally
observed tunnel transitions and that the antisymmetric exchange interaction
between the spins gives rise to tunneling processes between spin states
belonging to different spin multiplets.Comment: 5 pages, 4 figure
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
From covariant to canonical formulations of discrete gravity
Starting from an action for discretized gravity we derive a canonical
formalism that exactly reproduces the dynamics and (broken) symmetries of the
covariant formalism. For linearized Regge calculus on a flat background --
which exhibits exact gauge symmetries -- we derive local and first class
constraints for arbitrary triangulated Cauchy surfaces. These constraints have
a clear geometric interpretation and are a first step towards obtaining
anomaly--free constraint algebras for canonical lattice gravity. Taking higher
order dynamics into account the symmetries of the action are broken. This
results in consistency conditions on the background gauge parameters arising
from the lowest non--linear equations of motion. In the canonical framework the
constraints to quadratic order turn out to depend on the background gauge
parameters and are therefore pseudo constraints. These considerations are
important for connecting path integral and canonical quantizations of gravity,
in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version +
updated references
- …