4 research outputs found
Early M-Protein Dynamics Predicts Progression-Free Survival in Patients With Relapsed/Refractory Multiple Myeloma
This study aimed to predict long-term progression-free survival (PFS) using early M-protein dynamic measurements in patients with relapsed/refractory multiple myeloma (MM). The PFS was modeled based on dynamic M-protein data from two phase III studies, POLLUX and CASTOR, which included 569 and 498 patients with relapsed/refractory MM, respectively. Both studies compared active controls (lenalidomide and dexamethasone, and bortezomib and dexamethasone, respectively) alone vs. in combination with daratumumab. Three M-protein dynamic features from the longitudinal M-protein data were evaluated up to different time cutoffs (1, 2, 3, and 6Â months). The abilities of early M-protein dynamic measurements to predict the PFS were evaluated using Cox proportional hazards survival models. Both univariate and multivariable analyses suggest that maximum reduction of M-protein (i.e., depth of response) was the most predictive of PFS. Despite the statistical significance, the baseline covariates provided very limited predictive value regarding the treatment effect of daratumumab. However, M-protein dynamic features obtained within the first 2Â months reasonably predicted PFS and the associated treatment effect of daratumumab. Specifically, the areas under the time-varying receiver operating characteristic curves for the model with the first 2Â months of M-protein dynamic data were ~Â 0.8 and 0.85 for POLLUX and CASTOR, respectively. Early M-protein data within the first 2Â months can provide a prospective and reasonable prediction of future long-term clinical benefit for patients with MM
Daratumumab plus lenalidomide and dexamethasone in relapsed/ refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study
In POLLUX, daratumumab (D) plus lenalidomide/dexamethasone (Rd) reduced the risk of disease progression or death by 63% and increased the overall response rate (ORR) versus Rd in relapsed/refractory multiple myeloma (RRMM). Updated efficacy and safety after >3 years of follow-up are presented. Patients (N = 569) with ≥1 prior line received Rd (lenalidomide, 25 mg, on Days 1–21 of each 28-day cycle; dexamethasone, 40 mg, weekly) ± daratumumab at the approved dosing schedule. Minimal residual disease (MRD) was assessed by next-generation sequencing. After 44.3 months median follow-up, D-Rd prolonged progression-free survival (PFS) in the intent-to-treat population (median 44.5 vs 17.5 months; HR, 0.44; 95% CI, 0.35–0.55; P < 0.0001) and in patient subgroups. D-Rd demonstrated higher ORR (92.9 vs 76.4%; P < 0.0001) and deeper responses, including complete response or better (56.6 vs 23.2%; P < 0.0001) and MRD negativity (10–5; 30.4 vs 5.3%; P < 0.0001). Median time to next therapy was prolonged with D-Rd (50.6 vs 23.1 months; HR, 0.39; 95% CI, 0.31–0.50; P < 0.0001). Median PFS on subsequent line of therapy (PFS2) was not reached with D-Rd versus 31.7 months with Rd (HR, 0.53; 95% CI, 0.42–0.68; P < 0.0001). No new safety concerns were reported. These data support using D-Rd in patients with RRMM after first relapse
Daratumumab plus lenalidomide and dexamethasone in relapsed/ refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study
In POLLUX, daratumumab (D) plus lenalidomide/dexamethasone (Rd) reduced the risk of disease progression or death by 63% and increased the overall response rate (ORR) versus Rd in relapsed/refractory multiple myeloma (RRMM). Updated efficacy and safety after >3 years of follow-up are presented. Patients (N = 569) with ≥1 prior line received Rd (lenalidomide, 25 mg, on Days 1–21 of each 28-day cycle; dexamethasone, 40 mg, weekly) ± daratumumab at the approved dosing schedule. Minimal residual disease (MRD) was assessed by next-generation sequencing. After 44.3 months median follow-up, D-Rd prolonged progression-free survival (PFS) in the intent-to-treat population (median 44.5 vs 17.5 months; HR, 0.44; 95% CI, 0.35–0.55; P < 0.0001) and in patient subgroups. D-Rd demonstrated higher ORR (92.9 vs 76.4%; P < 0.0001) and deeper responses, including complete response or better (56.6 vs 23.2%; P < 0.0001) and MRD negativity (10–5; 30.4 vs 5.3%; P < 0.0001). Median time to next therapy was prolonged with D-Rd (50.6 vs 23.1 months; HR, 0.39; 95% CI, 0.31–0.50; P < 0.0001). Median PFS on subsequent line of therapy (PFS2) was not reached with D-Rd versus 31.7 months with Rd (HR, 0.53; 95% CI, 0.42–0.68; P < 0.0001). No new safety concerns were reported. These data support using D-Rd in patients with RRMM after first relapse
Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX
High cytogenetic risk abnormalities confer poor outcomes in multiple myeloma patients. In POLLUX, daratumumab/lenalidomide/dexamethasone (D-Rd) demonstrated significant clinical benefit versus lenalidomide/dexamethasone (Rd) in relapsed/refractory multiple myeloma (RRMM) patients. We report an updated subgroup analysis of POLLUX based on cytogenetic risk. The cytogenetic risk was determined using fluorescence in situ hybridization/karyotyping; patients with high cytogenetic risk had t(4;14), t(14;16), or del17p abnormalities. Minimal residual disease (MRD; 10–5) was assessed via the clonoSEQ® assay V2.0. 569 patients were randomized (D-Rd, n = 286; Rd, n = 283); 35 (12%) patients per group had high cytogenetic risk. After a median follow-up of 44.3 months, D-Rd prolonged progression-free survival (PFS) versus Rd in standard cytogenetic risk (median: not estimable vs 18.6 months; hazard ratio [HR], 0.43; P < 0.0001) and high cytogenetic risk (median: 26.8 vs 8.3 months; HR, 0.34; P = 0.0035) patients. Responses with D-Rd were deep, including higher MRD negativity and sustained MRD-negativity rates versus Rd, regardless of cytogenetic risk. PFS on subsequent line of therapy was improved with D-Rd versus Rd in both cytogenetic risk subgroups. The safety profile of D-Rd by cytogenetic risk was consistent with the overall population. These findings demonstrate the improved efficacy of daratumumab plus standard of care versus standard of care in RRMM, regardless of cytogenetic risk