44 research outputs found

    Inactivation of Chk2 and Mus81 Leads to Impaired Lymphocytes Development, Reduced Genomic Instability, and Suppression of Cancer

    Get PDF
    Chk2 is an effector kinase important for the activation of cell cycle checkpoints, p53, and apoptosis in response to DNA damage. Mus81 is required for the restart of stalled replication forks and for genomic integrity. Mus81Δex3-4/Δex3-4 mice have increased cancer susceptibility that is exacerbated by p53 inactivation. In this study, we demonstrate that Chk2 inactivation impairs the development of Mus81Δex3-4/Δex3-4 lymphoid cells in a cell-autonomous manner. Importantly, in contrast to its predicted tumor suppressor function, loss of Chk2 promotes mitotic catastrophe and cell death, and it results in suppressed oncogenic transformation and tumor development in Mus81Δex3-4/Δex3-4 background. Thus, our data indicate that an important role for Chk2 is maintaining lymphocyte development and that dual inactivation of Chk2 and Mus81 remarkably inhibits cancer

    Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Get PDF
    Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites

    Elevated Levels of the Polo Kinase Cdc5 Override the Mec1/ATR Checkpoint in Budding Yeast by Acting at Different Steps of the Signaling Pathway

    Get PDF
    Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends

    Mice with the CHEK2*1100delC SNP are predisposed to cancer with a strong gender bias

    No full text
    The CHEK2 kinase (Chk2 in mouse) is a member of a DNA damage response pathway that regulates cell cycle arrest at cell cycle checkpoints and facilitates the repair of dsDNA breaks by a recombination-mediated mechanism. There are numerous variants of the CHEK2 gene, at least one of which, CHEK2*1100delC (SNP), associates with breast cancer. A mouse model in which the wild-type Chk2 has been replaced by a Chk2*1100delC allele was tested for elevated risk of spontaneous cancer and increased sensitivity to challenge by a carcinogenic compound. Mice homozygous for Chk2*1100delC produced more tumors than wild-type mice, whereas heterozygous mice were not statistically different. When fractionated by gender, however, homozygous and heterozygous mice developed spontaneous tumors more rapidly and to a far greater extent than wild-type mice, indicative of a marked gender bias in mice harboring the variant allele. Consistent with our previous data showing elevated genomic instability in mouse embryonic fibroblasts (MEFs) derived from mice homozygous for Chk2*1100delC, the level of Cdc25A was elevated in heterozygous and homozygous MEFs and tumors. When challenged with the carcinogen 7,12-dimethylbenz[a]anthracene, all mice, regardless of genotype, had a reduced lifespan. Latency for mammary tumorigenesis was reduced significantly in mice homozygous for Chk2*1100delC but unexpectedly increased for the development of lymphomas. An implication from this study is that individuals who harbor the variant CHEK2*1100delC allele not only are at an elevated risk for the development of cancer but also that this risk can be further increased as a result of environmental exposure

    Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase

    No full text
    Resistance to chemotherapy is a major obstacle for successful treatment of breast cancer patients. Given that prolactin (PRL) acts as an anti-apoptotic/survival factor in the breast, we postulated that it antagonizes cytotoxicity by chemotherapeutic drugs. Treatment of breast cancer cells with PRL caused variable resistance to taxol, vinblastine, doxorubicin and cisplatin. PRL prevented cisplatin-induced G2/M cell cycle arrest and apoptosis. In the presence of PRL, significantly less cisplatin was bound to DNA, as determined by mass spectroscopy, and little DNA damage was seen by γ-H2AX staining. PRL dramatically increased the activity of glutathione-S-transferase (GST), which sequesters cisplatin in the cytoplasm; this increase was abrogated by Jak and mitogen-activated protein kinase inhibitors. PRL upregulated the expression of the GSTμ, but not the π, isozyme. A GST inhibitor abrogated antagonism of cisplatin cytotoxicity by PRL. In conclusion, PRL confers resistance against cisplatin by activating a detoxification enzyme, thereby reducing drug entry into the nucleus. These data provide a rational explanation for the ineffectiveness of cisplatin in breast cancer, which is characterized by high expression of both PRL and its receptor. Suppression of PRL production or blockade of its actions should benefit patients undergoing chemotherapy by allowing for lower drug doses and expanded drug options

    Complete DNA Sequence and Analysis of the Large Virulence Plasmid of Shigella flexneri

    No full text
    The complete sequence analysis of the 210-kb Shigella flexneri 5a virulence plasmid was determined. Shigella spp. cause dysentery and diarrhea by invasion and spread through the colonic mucosa. Most of the known Shigella virulence determinants are encoded on a large plasmid that is unique to virulent strains of Shigella and enteroinvasive Escherichia coli; these known genes account for approximately 30 to 35% of the virulence plasmid. In the complete sequence of the virulence plasmid, 286 open reading frames (ORFs) were identified. An astonishing 153 (53%) of these were related to known and putative insertion sequence (IS) elements; no known bacterial plasmid has previously been described with such a high proportion of IS elements. Four new IS elements were identified. Fifty putative proteins show no significant homology to proteins of known function; of these, 18 have a G+C content of less than 40%, typical of known virulence genes on the plasmid. These 18 constitute potentially unknown virulence genes. Two alleles of shet2 and five alleles of ipaH were also identified on the plasmid. Thus, the plasmid sequence suggests a remarkable history of IS-mediated acquisition of DNA across bacterial species. The complete sequence will permit targeted characterization of potential new Shigella virulence determinants
    corecore