398 research outputs found

    Gravity-driven Dense Granular Flows

    Full text link
    We report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type of force law has little impact on the behavior of the system. Bulk and surface flows differ in their failure criteria and flow rheology, as evidenced by the change in principal stress directions near the surface. Surface-only flows are not observed in this geometry.Comment: 4 pages, RevTeX 3.0, 4 PostScript figures (5 files) embedded with eps

    Modelling formation and evolution of transverse dune fields

    Full text link
    We model formation and evolution of transverse dune fields. In the model, only the cross section of the dune is simulated. The only physical variable of relevance is the dune height, from which the dune width and velocity are determined, as well as phenomenological rules for interaction between two dunes of different heights. We find that dune fields with no sand on the ground between dunes are unstable, i.e. small dunes leave the higher ones behind. We then introduce a saturation length to simulate transverse dunes on a sand bed and show that this leads to stable dune fields with regular spacing and dune heights. Finally, we show that our model can be used to simulate coastal dune fields if a constant sand influx is considered, where the dune height increases with the distance from the beach, reaching a constant value.Comment: 18 pages including 9 figure

    Aeolian sans ripples: experimental study of saturated states

    Full text link
    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit non-linear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett. Title changed, figures corrected and simplified, more field data included, text clarifie

    Granular size segregation in underwater sand ripples

    Full text link
    We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different ``exotic'' patterns and their geophysical implications are presented.Comment: 8 page

    Spontaneous Stratification in Granular Mixtures

    Full text link
    Granular materials size segregate when exposed to external periodic perturbations such as vibrations. Moreover, mixtures of grains of different sizes spontaneously segregate in the absence of external perturbations: when a mixture is simply poured onto a pile, the large grains are more likely to be found near the base, while the small grains are more likely to be near the top. Here, we report a spontaneous phenomenon arising when we pour a mixture between two vertical plates: the mixture spontaneously stratifies into alternating layers of small and large grains whenever the large grains are rougher than the small grains. In contrast, we find only spontaneous segregation when the large grains are more rounded than the small grains. The stratification is related to the occurrence of avalanches; during each avalanche the grains comprising the avalanche spontaneously stratify into a pair of layers through a "kink" mechanism, with the small grains forming a sublayer underneath the layer of large grains.Comment: 4 pages, 6 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Acoustic Probing of the Jamming Transition in an Unconsolidated Granular Medium

    Get PDF
    Experiments with acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and the depth beneath the surface. Comparison of the determined dispersion relations for guided surface acoustic modes with a theoretical model reveals the dependencies of the elastic moduli of the granular medium on pressure. The experiments confirm recent theoretical predictions that relaxation of the disordered granular packing through non-affine motion leads to a peculiar scaling of shear rigidity with pressure near the jamming transition corresponding to zero pressure. Unexpectedly, and in disagreement with the most of the available theories, the bulk modulus depends on pressure in a very similar way to the shear modulus

    Aeolian transport layer

    Full text link
    We investigate the airborne transport of particles on a granular surface by the saltation mechanism through numerical simulation of particle motion coupled with turbulent flow. We determine the saturated flux qsq_{s} and show that its behavior is consistent with a classical empirical relation obtained from wind tunnel measurements. Our results also allow to propose a new relation valid for small fluxes, namely, qs=a(uut)αq_{s}=a(u_{*}-u_{t})^{\alpha}, where uu_{*} and utu_{t} are the shear and threshold velocities of the wind, respectively, and the scaling exponent is α2\alpha \approx 2. We obtain an expression for the velocity profile of the wind distorted by the particle motion and present a dynamical scaling relation. We also find a novel expression for the dependence of the height of the saltation layer as function of the wind velocity.Comment: 4 pages, 4 figure

    Stratification Instability in Granular Flows

    Full text link
    When a mixture of two kinds of grains differing in size and shape is poured in a vertical two-dimensional cell, the mixture spontaneously stratifies in alternating layers of small and large grains, whenever the large grains are more faceted than the small grains. Otherwise, the mixture spontaneously segregates in different regions of the cell when the large grains are more rounded than the small grains. We address the question of the origin of the instability mechanism leading to stratification using a recently proposed set of equations for surface flow of granular mixtures. We show that the stable solution of the system is a segregation solution due to size (large grains tend to segregate downhill near the substrate and small grains tend to segregate uphill) and shape (rounded grains tend to segregate downhill and more faceted grains tend to segregate uphill). As a result, the segregation solution of the system is realized for mixtures of large-rounded grains and small-cubic grains with the large-rounded grains segregating near the bottom of the pile. Stability analysis reveals the instability mechanism driving the system to stratification as a competition between size-segregation and shape-segregation taking place for mixtures of large-cubic grains and small-rounded grains. The large-cubic grains tend to size-segregate at the bottom of the pile, while at the same time, they tend to shape-segregate near the pouring point. Thus, the segregation solution becomes unstable, and the system evolves spontaneously to stratification.Comment: 10 pages, 10 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Low-speed impact craters in loose granular media

    Get PDF
    We report on craters formed by balls dropped into dry, non-cohesive, granular media. By explicit variation of ball density ρb\rho_{b}, diameter DbD_{b}, and drop height HH, the crater diameter is confirmed to scale as the 1/4 power of the energy of the ball at impact: Dc(ρbDb3H)1/4D_{c}\sim(\rho_{b}{D_{b}}^{3}H)^{1/4}. Against expectation, a different scaling law is discovered for the crater depth: d(ρb3/2Db2H)1/3d\sim({\rho_{b}}^{3/2}{D_{b}}^{2}H)^{1/3}. The scaling with properties of the medium is also established. The crater depth has significance for granular mechanics in that it relates to the stopping force on the ball.Comment: experiment; 4 pages, 3 figure

    Rheological properties of the soft-disk model of two-dimensional foams

    Get PDF
    The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization is found. Its nonexponential form and the variation of localization length with boundary velocity are well described by a continuum model in the spirit of Janiaud et al. [Phys. Rev. Lett. 97, 038302 (2006)]. Other results satisfactorily link localization to model parameters, and hence tie together continuum and local descriptions
    corecore