43 research outputs found
A phase 1b study evaluating the effect of elacestrant treatment on estrogen receptor availability and estradiol binding to the estrogen receptor in metastatic breast cancer lesions using 18F-FES PET/CT imaging
Background: Elacestrant is an oral selective estrogen receptor (ER) degrader. This phase 1b open-label, nonrandomized study (RAD1901-106) was initiated to determine the effect of elacestrant on the availability of ER in
lesions from postmenopausal women with ER+ advanced breast cancer (ABC) using 16α18F-fluoro-17β-estradiol
positron emission tomography with low-dose computed tomography (FES-PET/CT).
Methods: Eligible patients were postmenopausal women with ER+, HER2− ABC; tumor progression after ≥ 6
months of 1–3 lines of endocrine treatment for ABC; and measurable or evaluable disease. Two 8-patient cohorts
were enrolled: one treated with 400 mg elacestrant once daily (QD) and one treated with 200 mg elacestrant QD
with dose escalation to 400 mg QD after 14 days. Elacestrant was dosed continuously until progressive disease,
toxicity, or withdrawal. FES-PET/CT was performed pre-dose at baseline and 4 h post-dose on day 14. The primary
endpoint was the percentage difference in FES uptake in tumor lesions (maximum 20) after 14 days of treatment
compared to baseline. Overall response was investigator-assessed by Response Evaluation Criteria in Solid T
Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts
We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates
A phase 1b study evaluating the effect of elacestrant treatment on estrogen receptor availability and estradiol binding to the estrogen receptor in metastatic breast cancer lesions using 18F-FES PET/CT imaging
Background: Elacestrant is an oral selective estrogen receptor (ER) degrader. This phase 1b open-label, non-randomized study (RAD1901-106) was initiated to determine the effect of elacestrant on the availability of ER in lesions from postmenopausal women with ER+ advanced breast cancer (ABC) using 16α-18F-fluoro-17β-estradiol positron emission tomography with low-dose computed tomography (FES-PET/CT). Methods: Eligible patients were postmenopausal women with ER+, HER2- ABC; tumor progression after ≥ 6 months of 1-3 lines of endocrine treatment for ABC; and measurable or evaluable disease. Two 8-patient cohorts were enrolled: one treated with 400 mg elacestrant once daily (QD) and one treated with 200 mg elacestrant QD with dose escalation to 400 mg QD after 14 days. Elacestrant was dosed continuously until progressive disease, toxicity, or withdrawal. FES-PET/CT was performed pre-dose at baseline and 4 h post-dose on day 14. The primary endpoint was the percentage difference in FES uptake in tumor lesions (maximum 20) after 14 days of treatment compared to baseline. Overall response was investigator-assessed by Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1. Results: Patients (n = 16; median age, 53.5 years) had ABC with a median 2.5 prior lines of endocrine therapy. Median reduction in tumor FES uptake from baseline to day 14 was 89.1% (Q1, Q3: 75.1%, 94.1%) and was similar in both cohorts (89.1% [Q1, Q3: 67.4%, 94.2%], 200/400 mg and 88.7% [Q1, Q3: 79.5%, 94.1%], 400 mg). Residual ER availability (> 25% persistence in FES uptake) on day 14 was observed in 3 patients receiving 200/400 mg (3/78, 37.5%) and 1 patient receiving 400 mg (1/8, 12.5%). The overall response rate (ORR) was 11.1% (1 partial response), and clinical benefit rate (CBR) was 30.8%. Median percentage change in FES uptake did not correlate with ORR or CBR. Adverse events occurring in > 20% of the patients were nausea (68.8%), fatigue (50.0%), dyspepsia (43.8%), vomiting (37.5%), and decreased appetite, dysphagia, and hot flush (31.3% each). Most events were grade 2 in severity. Conclusion: Elacestrant 200 mg and 400 mg QD greatly reduced ER availability measured by FES-PET/CT. In a heavily pretreated population, elacestrant was associated with antitumor activity. Trial registration: ClinicalTrials.gov, NCT02650817. Registered on 08 January 2016SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: a case for the methylfolate trap.
Contains fulltext :
49911.pdf (publisher's version ) (Closed access)Haematological sequellae of vitamin B12 deficiency are attributed to disturbed DNA synthesis, but vitamin B12 itself plays no role in DNA biosynthesis. A proposed explanation for this is the methylfolate trap hypothesis. This hypothesis states that B12 deficiency impairs overall folate metabolism because 5-methyltetrahydrofolate (5MTHF) becomes metabolically trapped. This trap results from the fact that 5MTHF can neither be metabolised via the methionine synthase pathway, nor can it be reconverted to its precursor, methylenetetrahydrofolate. Other manifestations of the methylfolate trap include cellular folate loss because of shorter 5MTHF polyglutamate chains and global hypomethylation. The methylfolate trap has never been demonstrated in humans. We describe a patient with B12 deficiency who was homozygous for the common methylenetetrahydrofolate reductase (MTHFR) C677T mutation. We analysed red blood cell (RBC) folate vitamers and global DNA methylation by liquid chromatography (LC) in combination with tandem mass spectrometry, and 5MTHF polyglutamate length by LC-electrochemical detection. Compared to post-B12 supplementation values, homocysteine was higher (52.9 micromol/l vs. 16.8 micromol/l), RBC folate was lower (268.92 nmol/l vs. 501.2 nmol/l), the 5MTHF fraction of RBC folate was much higher (94.5% vs. 67.4%), polyglutamate chain length was shorter (more tetra- and pentaglutamates), and global DNA methylation was 22% lower. This is the first time that virtually all features of the methylfolate trap hypothesis have been demonstrated in a human with vitamin B12 deficiency