227 research outputs found

    Growth and Tolerance of Preterm Infants Fed a New Extensively Hydrolyzed Liquid Human Milk Fortifier

    Get PDF
    OBJECTIVES: This study was a comparison of growth and tolerance in premature infants fed either standard powdered human milk fortifier (HMF) or a newly formulated concentrated liquid that contained extensively hydrolyzed protein. METHODS: This was an unblinded randomized controlled multicenter noninferiority study on preterm infants receiving human milk (HM) supplemented with 2 randomly assigned HMFs, either concentrated liquid HMF containing extensively hydrolyzed protein (LE-HMF) or a powdered intact protein HMF (PI-HMF) as the control. The study population consisted of preterm infants ≤33 weeks who were enterally fed HM. Infants were studied from the first day of HM fortification until day 29 or hospital discharge, whichever came first. RESULTS: A total of 147 preterm infants were enrolled. Noninferiority was observed in weight gain reported in the intent-to-treat (ITT) analysis was 18.2 and 17.5 g · kg(−1) · day(−1) for the LE-HMF and PI-HMF groups, respectively. In an a priori defined subgroup of strict protocol followers (n = 75), the infants fed LE-HMF achieved greater weight over time than those fed PI-HMF (P = 0.036). The LE-HMF group achieved greater linear growth over time compared to the PI-HMF (P = 0.029). The protein intake from fortified HM was significantly higher in the LE-HMF group compared with the PI-HMF group (3.9 vs 3.3 g · kg(−1) · day(−1), P < 0.0001). Both fortifiers were well tolerated with no significant differences in overall morbidity. CONCLUSIONS: Both fortifiers showed excellent weight gain (grams per kilograms per day), tolerance, and low incidence of morbidity outcomes with the infants who were strict protocol followers fed LE-HMF having improved growth during the study. These data point to the safety and suitability of this new concentrated liquid HMF (LE-HMF) in preterm infants. Growth with this fortifier closely matches the recent recommendations for a weight gain of >18 g · kg(−1) · day(−1)

    Search for Millicharged Particles at SLAC

    Get PDF
    Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such "millicharged" particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted to Physical Review Letter

    WAVOS: a MATLAB toolkit for wavelet analysis and visualization of oscillatory systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wavelets have proven to be a powerful technique for the analysis of periodic data, such as those that arise in the analysis of circadian oscillators. While many implementations of both continuous and discrete wavelet transforms are available, we are aware of no software that has been designed with the nontechnical end-user in mind. By developing a toolkit that makes these analyses accessible to end users without significant programming experience, we hope to promote the more widespread use of wavelet analysis.</p> <p>Findings</p> <p>We have developed the WAVOS toolkit for wavelet analysis and visualization of oscillatory systems. WAVOS features both the continuous (Morlet) and discrete (Daubechies) wavelet transforms, with a simple, user-friendly graphical user interface within MATLAB. The interface allows for data to be imported from a number of standard file formats, visualized, processed and analyzed, and exported without use of the command line. Our work has been motivated by the challenges of circadian data, thus default settings appropriate to the analysis of such data have been pre-selected in order to minimize the need for fine-tuning. The toolkit is flexible enough to deal with a wide range of oscillatory signals, however, and may be used in more general contexts.</p> <p>Conclusions</p> <p>We have presented WAVOS: a comprehensive wavelet-based MATLAB toolkit that allows for easy visualization, exploration, and analysis of oscillatory data. WAVOS includes both the Morlet continuous wavelet transform and the Daubechies discrete wavelet transform. We have illustrated the use of WAVOS, and demonstrated its utility for the analysis of circadian data on both bioluminesence and wheel-running data. WAVOS is freely available at <url>http://sourceforge.net/projects/wavos/files/</url></p

    Harmonics of Circadian Gene Transcription in Mammals

    Get PDF
    The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse
    corecore