49 research outputs found

    Conservation and divergence within the clathrin interactome of <i>Trypanosoma cruzi</i>

    Get PDF
    Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300 million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent

    Modeling methicillin-resistant Staphylococcus aureus in hospitals: Transmission dynamics, antibiotic usage and its history

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is endemic in many hospital settings, posing substantial threats and economic burdens worldwide. METHODS: We propose mathematical models to investigate the transmission dynamics of MRSA and determine factors that influence the prevalence of MRSA infection when antibiotics are given to patients to treat or prevent infections with either MRSA itself or other bacterial pathogens. RESULTS: Our results suggest that: (i) MRSA always persists in the hospital when colonized and infected patients are admitted; (ii) the longer the duration of treatment of infected patients and the lower the probability of successful treatment will increase the prevalence of MRSA infection; (iii) the longer the duration of contamination of health care workers (HCWs) and the more their contacts with patients may increase the prevalence of MRSA infection; (iv) possible ways to control the prevalence of MRSA infection include treating patients with antibiotic history as quickly and efficiently as possible, screening and isolating colonized and infected patients at admission, and compliance with strict hand-washing rules by HCWs. CONCLUSION: Our modeling studies offer an approach to investigating MRSA infection in hospital settings and the impact of antibiotic history on the incidence of infection. Our findings suggest important influences on the prevalence of MRSA infection which may be useful in designing control policies

    Pattern formation and spatial solitons in bistable liquid-crystal microcavities

    No full text
    We report on spatial pattern formation, and appearances of 'optical bullet holes' in single-mode microcavities that are filled with liquid-crystals, when pumped above the cavity resonance frequency. These phenomena only occur beyond the bistability threshold. ©2002 Optical Society of America

    UV generation in a pure-silica holey fiber

    No full text
    We report supercontinuum generation extending to 300 nm in the UV from a pure-silica holey fiber. The broad spectrum was obtained by launching ultra-short pulses (similar to 150 fs, 10 nJ at 820 nm) from an amplified Ti:sapphire laser. The extension of holey-fiber-based supercontinuum generation into the UV should prove to be of immediate application in spectroscopy. By slightly detuning the launch conditions we excited a higher order spatial mode, which produced a narrower supercontinuum. but with enhanced conversion efficiency at a series of blue/UV peaks around 360 nm. We present numerical simulations, which suggest that differences in the dispersion profiles between the modes are an important factor in explaining this enhancement. In a related experiment, using the same laser source and fiber, we demonstrate a visible supercontinuum from several subsidiary cores, with distinct colours in each core. The subsidiary cores were excited by an appropriate input coupling. Fabrication of a fiber with a range of core sizes (dispersion profiles) for tailored supercontinuum generation can therefore be envisaged for practical applications
    corecore