44 research outputs found

    Use of QuantiFERON®-TB Gold in-tube culture supernatants for measurement of antibody responses.

    Get PDF
    QuantiFERON®-TB Gold in-tube (QFT-GIT) supernatants may be important samples for use in assessment of anti-tuberculosis (TB) antibodies when only limited volumes of blood can be collected and when a combination of antibody and cytokine measurements are required. These analytes, when used together, may also have the potential to differentiate active pulmonary TB (APTB) from latent TB infection (LTBI). However, few studies have explored the use of QFT-GIT supernatants for investigations of antibody responses. This study determined the correlation and agreement between anti-CFP-10 and anti-ESAT-6 antibody concentrations in QFT-GIT nil supernatant and serum pairs from 68 TB household contacts. We also explored the ability of Mycobacterium tuberculosis (M.tb) specific antibodies, or ratios of antibody to interferon gamma (IFN-γ) in QFT-GIT supernatants, to differentiate 97 APTB cases from 58 individuals with LTBI. Sputum smear microscopy was used to define APTB, whereas the QFT-GIT and tuberculin skin test were used to define LTBI. There were strong and statistically significant correlations between anti-CFP-10 and anti-ESAT-6 antibodies in unstimulated QFT-GIT supernatants and sera (r = 0.89; p<0.0001 for both), and no significant differences in antibody concentration between them. Anti-CFP-10 & anti-ESAT-6 antibodies differentiated APTB from LTBI with sensitivities of 88.7% & 71.1% and specificities of 41.4% & 51.7% respectively. Anti-CFP-10 antibody/M.tb specific IFN-γ and anti-ESAT-6 antibody/M.tb specific IFN-γ ratios had sensitivities of 48.5% & 54.6% and specificities of 89.7% and 75.9% respectively. We conclude that QFT-GIT nil supernatants may be used in the place of sera when measuring antibody responses, reducing blood volumes needed for such investigations. Antibodies in QFT-GIT nil supernatants on their own discriminate APTB from LTBI with high sensitivity but have poor specificity, whereas the reverse is true when antibodies are used in combination with M.tb specific cytokines. Further antibody and antibody/cytokine combinations need to be explored to achieve better diagnostic accuracy

    Brief Report: Identification of Elite and Viremic Controllers From a Large Urban HIV Ambulatory Center in Kampala, Uganda.

    Get PDF
    BACKGROUND: Throughout the world, there are antiretroviral therapy-naive HIV+ individuals who maintain elevated peripheral CD4 T-cell counts, historically referred to as long-term nonprogressors (LTNPs). With recent improvements in viral load (VL) detection methods to levels as low as 20 copies per milliliter, 2 subsets of LTNPs have been defined: elite controllers (ECs), with undetectable VLs for at least 6-12 months, and viremic controllers (VCs), with VLs between 200 and 2000 copies per milliliter. ECs and VCs have been extensively studied in the developed world to determine underlying mechanisms responsible for virologic control. In sub-Saharan Africa, most studies have characterized LTNPs based on immunologic criteria making it difficult to compare findings with the Western cohorts, which use virologic criteria. Here, we describe a cohort of Uganda ECs and VCs attending a large HIV ambulatory center in Kampala, Uganda, based initially on CD4 counts and confirmed by repeated VL measurements. METHODS: A cross-sectional study was conducted among 14,492 HIV-infected, antiretroviral therapy-naive individuals aged 18 years and older under care for at least 5 years with serial peripheral CD4 counts ≥500 cells/μL. Among those, we determined the frequency of individuals with VLs <2000 copies per milliliter for at least 6 months. RESULTS: We report a prevalence of 0.26% (38/14,492) of HIV controllers in the clinic. We identified 36 ECs and 2 VCs. These individuals were middle-aged with an average CD4 count of 858 ± 172 (mean ± SD, 95% confidence interval: 795 to 921). Their average duration in HIV care was 7.4 ± 2.1 years (mean ± SD, 95% confidence interval: 6.6 to 8.1). The majority of EC/VCs were women (87%, 33/38), reflecting the demographics of the urban clinic. CONCLUSIONS: For the first time, this study demonstrates the frequency of EC/VCs in a large urban clinic in Uganda. Further study of these East African subjects may provide insights into how some individuals are able to control HIV in the absence of medications

    Phylogenetic Networks and Parameters Inferred from HIV Nucleotide Sequences of High-Risk and General Population Groups in Uganda:Implications for Epidemic Control

    Get PDF
    Phylogenetic inference is useful in characterising HIV transmission networks and assessing where prevention is likely to have the greatest impact. However, estimating parameters that influence the network structure is still scarce, but important in evaluating determinants of HIV spread. We analyzed 2017 HIV pol sequences (728 Lake Victoria fisherfolk communities (FFCs), 592 female sex workers (FSWs) and 697 general population (GP)) to identify transmission networks on Maximum Likelihood (ML) phylogenetic trees and refined them using time-resolved phylogenies. Network generative models were fitted to the observed degree distributions and network parameters, and corrected Akaike Information Criteria and Bayesian Information Criteria values were estimated. 347 (17.2%) HIV sequences were linked on ML trees (maximum genetic distance ≤4.5%, ≥95% bootstrap support) and, of these, 303 (86.7%) that consisted of pure A1 (n = 168) and D (n = 135) subtypes were analyzed in BEAST v1.8.4. The majority of networks (at least 40%) were found at a time depth of ≤5 years. The waring and yule models fitted best networks of FFCs and FSWs respectively while the negative binomial model fitted best networks in the GP. The network structure in the HIV-hyperendemic FFCs is likely to be scale-free and shaped by preferential attachment, in contrast to the GP. The findings support the targeting of interventions for FFCs in a timely manner for effective epidemic control. Interventions ought to be tailored according to the dynamics of the HIV epidemic in the target population and understanding the network structure is critical in ensuring the success of HIV prevention programs

    Meta-analysis of African ancestry genome-wide association studies identified novel locus and validates multiple loci associated with kidney function

    Get PDF
    Despite recent efforts to increase diversity in genome-wide association studies (GWASs), most loci currently associated with kidney function are still limited to European ancestry due to the underlying sample selection bias in available GWASs. We set out to identify susceptibility loci associated with estimated glomerular filtration rate (eGFRcrea) in 80027 individuals of African-ancestry from the UK Biobank (UKBB), Million Veteran Program (MVP), and Chronic Kidney Disease genetics (CKDGen) consortia. We identified 8 lead SNPs, 7 of which were previously associated with eGFR in other populations. We identified one novel variant, rs77408001 which is an intronic variant mapped to the ELN gene. We validated three previously reported loci at GATM-SPATA5L1, SLC15A5 and AGPAT3. Fine-mapping analysis identified variants rs77121243 and rs201602445 as having a 99.9% posterior probability of being causal. Our results warrant designing bigger studies within individuals of African ancestry to gain new insights into the pathogenesis of Chronic Kidney Disease (CKD), and identify genomic variants unique to this ancestry that may influence renal function and disease

    Hepatitis B prevalence and incidence in the fishing communities of Lake Victoria, Uganda: a retrospective cohort study.

    Get PDF
    INTRODUCTION: Hepatitis B is a serious potentially fatal hepatocellular disease caused by the hepatitis B virus. In the fishing communities of Lake Victoria Uganda, the hepatitis B virus infection burden is largely unknown. This study assessed the prevalence and incidence of hepatitis B in these communities. METHODS: This was a retrospective cohort study that tested serum samples collected from 13 to 49-year-old study participants that were residing in two Ugandan Lake Victoria fishing communities of Kasenyi (a mainland) and Jaana (an island). The samples were collected between 2013 and 2015 during the conduct of an HIV epidemiological cohort study in these communities. A total of 467 twelve-month follow-up and 50 baseline visit samples of participants lost to follow-up were tested for hepatitis B serological markers to determine prevalence. To determine hepatitis B virus incidence, samples that were hepatitis B positive at the follow-up visit had their baseline samples tested to identify hepatitis B negative samples whose corresponding follow-up samples were thus incident cases. RESULTS: The baseline mean age of the 517 study participants was 31.1 (SD ± 8.4) years, 278 (53.8%) of whom were females. A total of 36 (7%) study participants had hepatitis B virus infection, 22 (61.1%) of whom were male. Jaana had a higher hepatitis B virus prevalence compared to Kasenyi (10.2% vs 4.0%). In total, 210 (40.6%) study participants had evidence of prior hepatitis B virus infection while 48.6% had never been infected or vaccinated against this disease. A total of 20 (3.9%) participants had results suggestive of prior hepatitis B vaccination. Hepatitis B incidence was 10.5 cases/100PY (95% CI: 7.09-15.53). Being above 25 years of age and staying in Jaana were significant risk factors for hepatitis B virus acquisition (AOR 1.6, 95% CI: 1.1-2.2; p < 0.01 and 1.4, 95% CI: 1.1-1.8; p < 0.01 respectively). CONCLUSION: Hepatitis B virus incidence in Lake Victoria fishing communities of Uganda is very high, particularly in the islands. Interventions to lower hepatitis B virus transmission in these communities are urgently needed

    Phylogeography of HIV-1 suggests that Ugandan fishing communities are a sink for, not a source of, virus from general populations

    Get PDF
    Although fishing communities (FCs) in Uganda are disproportionately affected by HIV-1 relative to the general population (GP), the transmission dynamics are not completely understood. We earlier found most HIV-1 transmissions to occur within FCs of Lake Victoria. Here, we test the hypothesis that HIV-1 transmission in FCs is isolated from networks in the GP. We used phylogeography to reconstruct the geospatial viral migration patterns in 8 FCs and 2 GP cohorts and a Bayesian phylogenetic inference in BEAST v1.8.4 to analyse the temporal dynamics of HIV-1 transmission. Subtype A1 (pol region) was most prevalent in the FCs (115, 45.1%) and GP (177, 50.4%). More recent HIV transmission pairs from FCs were found at a genetic distance (GD) <1.5% than in the GP (Fisher's exact test, p = 0.001). The mean time depth for pairs was shorter in FCs (5 months) than in the GP (4 years). Phylogeographic analysis showed strong support for viral migration from the GP to FCs without evidence of substantial viral dissemination to the GP. This suggests that FCs are a sink for, not a source of, virus strains from the GP. Targeted interventions in FCs should be extended to include the neighbouring GP for effective epidemic control

    Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Characterising antibody avidity in individuals of varied Mycobacterium tuberculosis infection status using surface plasmon resonance.

    No full text
    There is increasing evidence supporting a role for antibodies in protection against tuberculosis (TB), with functional antibodies being described in the latent state of TB infection. Antibody avidity is an important determinant of antibody-mediated protection. This study characterised the avidity of antibodies against Ag85A, an immunodominant Mycobacterium tuberculosis (M.tb) antigen and constituent of several anti-TB vaccine candidates, in individuals of varied M.tb infection status. Avidity of Ag85A specific antibodies was measured in 30 uninfected controls, 34 individuals with latent TB infection (LTBI) and 75 active pulmonary TB (APTB) cases, employing the more commonly used chaotrope-based dissociation assays, and surface plasmon resonance (SPR). Chaotrope-based assays indicated that APTB was associated with a higher antibody avidity index compared to uninfected controls [adjusted geometric mean ratio (GMR): 1.641, 95% confidence interval (CI): 1.153, 2.337, p = 0.006, q = 0.018] and to individuals with LTBI [adjusted GMR: 1.604, 95% CI: 1.282, 2.006, p < 0.001, q <0.001]. SPR assays showed that APTB was associated with slower dissociation rates, an indication of higher avidity, compared to uninfected controls (adjusted GMR: 0.796, 95% CI: 0.681, 0.932, p = 0.004, q = 0.012) and there was also weak evidence of more avid antibodies in the LTBI compared to the uninfected controls (adjusted GMR: 0.871, 95% CI: 0.763, 0.994, p = 0.041, q = 0.123). We found no statistically significant differences in anti-Ag85A antibody avidity between the APTB and LTBI groups. This study shows that antibodies of increased avidity are generated against a principle vaccine antigen in M.tb infected individuals. It would be important to determine whether TB vaccines are able to elicit a similar response. Additionally, more research is needed to determine whether antibody avidity is important in protection against infection and disease
    corecore