128 research outputs found

    Myelosuppression in Patients Treated with the Telomerase Inhibitor Imetelstat Is Not Mediated through Activation of Toll-Like Receptors.

    Get PDF
    Imetelstat sodium (GRN163L; hereafter, imetelstat) is a first-in-class telomerase inhibitor that has demonstrated activity in patients with myeloproliferative neoplasms (MPNs). Treatment with imetelstat has been associated with thrombocytopenia and other hematologic adverse effects that were manageable and reversible. Toll-like receptors (TLRs) are proteins that recognize pathogen-associated molecular patterns and stimulate innate immune and pro-apoptotic responses. Because imetelstat is an oligonucleotide, and some oligonucleotides can activate TLRs, we conducted an in vitro study to rule out the possibility of imetelstat-associated thrombocytopenia by off-target effects through activation of TLRs. We used HEK293 cell lines stably co-expressing a human TLR gene and an NFκB-inducible reporter to investigate whether imetelstat can activate TLR signaling. We treated the cells with imetelstat or control oligonucleotides for 20 h, and used absorbance of the culture media to calculate the reporter activity. Treatment with imetelstat within or beyond the clinically relevant concentrations had no stimulatory effect on TLR2, TLR3, TLR4, TLR5, TLR7, or TLR9. This result was not surprising since the structure of imetelstat does not meet the reported minimal structural requirements for TLR9 activation. Furthermore, imetelstat treatment of the MPN cell line HEL did not impact the expression of TLR signaling pathway target genes that are commonly induced by activation of different TLRs, whereas it significantly reduced its target gene hTERT, human telomerase reverse transcriptase, in a dose- and time-dependent manner. Hence, cytopenias, especially thrombocytopenia observed in some patients treated with imetelstat, are not mediated by off-target interactions with TLRs

    Rapid and highly specific screening for NPM1 mutations in acute myeloid leukemia

    Get PDF
    NPM1 mutations, the most frequent molecular alterations in acute myeloid leukemia (AML), have become important for risk stratification and treatment decisions for patients with normal karyotype AML. Rapid screening for NPM1 mutations should be available shortly after diagnosis. Several methods for detecting NPM1 mutations have been described, most of which are technically challenging and require additional laboratory equipment. We developed and validated an assay that allows specific, rapid, and simple screening for NPM1 mutations. FAST PCR spanning exons 8 to 12 of the NPM1 gene was performed on 284 diagnostic AML samples. PCR products were visualized on a 2% agarose E-gel and verified by direct sequencing. The FAST PCR screening method showed a specificity and sensitivity of 100%, i.e., all mutated cases were detected, and none of negative cases carried mutations. The limit of detection was at 5-10% of mutant alleles. We conclude that the FAST PCR assay is a highly specific, rapid (less than 2h), and sensitive screening method for the detection of NPM1 mutations. Moreover, this method is inexpensive and can easily be integrated in the routine molecular diagnostic work-up of established risk factors in AML using standard laboratory equipmen

    Higher Age (≥60 Years) Increases the Risk for Adverse Events during Autologous Hematopoietic Stem Cell Transplantation.

    Get PDF
    Autologous hematopoietic stem cell transplantation (autoHSCT) is a standard of care for patients with hemato-oncologic diseases. This procedure is highly regulated, and a quality assurance system needs to be in place. Deviations from defined processes and outcomes are reported as adverse events (AEs: any untoward medical occurrence temporally associated with an intervention that may or may not have a causal relationship), including adverse reactions (ARs: a response to a medicinal product which is noxious and unintended). Only a few reports on AEs cover the procedure of autoHSCT from collection until infusion. Our aim was to investigate the occurrence and severity of AEs in a large data set of patients who were treated by autoHSCT. In this retrospective, observational, single-center study on 449 adult patients during the years 2016-2019, AEs occurred in 19.6% of the patients. However, only 6.0% of patients had ARs, which is a low rate compared to the percentages (13.5-56.9%) found in other studies; 25.8% of the AEs were serious and 57.5% were potentially serious. Larger leukapheresis volumes, lower numbers of collected CD34+ cells and larger transplant volumes significantly correlated with the occurrence and number of AEs. Importantly, we found more AEs in patients >60 years (see graphical abstract). By preventing potentially serious AEs of quality and procedural issues, AEs could be reduced by 36.7%. Our results provide a broad view on AEs and point out steps and parameters for the potential optimization of the autoHSCT procedure, especially in elderly patients

    CD27 Expression Promotes Long-Term Survival of Functional Effector–Memory CD8+Cytotoxic T Lymphocytes in HIV-infected Patients

    Get PDF
    Human immunodeficiency virus (HIV)-specific CD8+ T cells persist in high frequencies in HIV-infected patients despite impaired CD4+ T helper response to the virus, but, unlike other differentiated effector cytotoxic T lymphocytes, most continue to express the tumor necrosis factor receptor family member CD27. Because the ligand for CD27 (CD70) is also overexpressed in HIV-infected hosts, we examined the nature of expression and potential functional consequences of CD27 expression on HIV-specific CD8+ T cells. Analysis of CD27+ and CD27− T cells derived from the same HIV-specific clone revealed that retention of CD27 did not interfere with acquisition of effector functions, and that after T cell receptor stimulation, CD27+ cells that concurrently were triggered via CD27 exhibited more resistance to apoptosis, interleukin 2 production, and proliferation than CD27− T cells. After transfer back into an HIV-infected patient, autologous HIV-specific CD27− T cells rapidly disappeared, but CD27+ T cells derived from the same clone persisted at high frequency. Our findings suggest that the CD27–CD70 interaction in HIV infection may provide CD27+ CD8+ T cells with a survival advantage and compensate for limiting or absent CD4+ T help to maintain the CD8 response

    BeEAM conditioning with bendamustine-replacing BCNU before autologous transplantation is safe and effective in lymphoma patients.

    Get PDF
    BEAM with BCNU is commonly used for conditioning treatment followed by autologous stem cell transplantation (ASCT). However, pulmonary toxicity and availability issues associated with BCNU prompted us to evaluate bendamustine-replacing BCNU (BeEAM). We analyzed 39 lymphoma patients receiving BeEAM conditioning with 200 mg/m(2) bendamustine at days -7 and -6. The median duration until neutrophil recovery was 11 days, and 15 days for platelet recovery (>20 g/L). The most common grade 3/4 non-hematologic toxicities comprised mucosal side effects (27 pts.). Pulmonary toxicity was observed in one patient (2.5%), and one patient died of septic complications. The CR rate increased from 33% to 74% 100 days after ASCT. After a median follow-up of 18.5 months, progression and death each occurred in 11 patients (28%). Median progression-free and overall survival at 2 years were 69% and 72%. Our data suggest that BeEAM conditioning using bendamustine is safe and results in promising survival rates

    Functional characterization of telomerase RNA variants found in patients with hematologic disorders

    Get PDF
    Human telomerase uses a specific cellular RNA, called hTERC, as the template to synthesize telomere repeats at chromosome ends. Approximately 10% to 15% of patients with aplastic anemia or other bone marrow failure syndromes are carriers of hTERC sequence variants whose functional significance, in most cases, is unknown. We screened 10 reported and 2 newly discovered hTERC variants from such patients and found that 10 of these negatively affected telomerase enzymatic function when they were used to reconstitute telomerase enzymatic function in human cells. Most functional deficits were due to perturbations of hTERC secondary structure and correlated well with the degrees of telomere shortening and reduced telomerase activity observed in peripheral blood lymphocytes of the representative patients. We also found no evidence of dominant-negative activity in any of the mutants. Therefore, loss of telomerase activity and of telomere maintenance resulting from inherited hTERC mutations may limit marrow stem cell renewal and predispose some patients to bone marrow failure. (Blood. 2005;105: 2332-2339

    Targeting Telomere Biology in Acute Lymphoblastic Leukemia.

    Get PDF
    Increased cell proliferation is a hallmark of acute lymphoblastic leukemia (ALL), and genetic alterations driving clonal proliferation have been identified as prognostic factors. To evaluate replicative history and its potential prognostic value, we determined telomere length (TL) in lymphoblasts, B-, and T-lymphocytes, and measured telomerase activity (TA) in leukocytes of patients with ALL. In addition, we evaluated the potential to suppress the in vitro growth of B-ALL cells by the telomerase inhibitor imetelstat. We found a significantly lower TL in lymphoblasts (4.3 kb in pediatric and 2.3 kb in adult patients with ALL) compared to B- and T-lymphocytes (8.0 kb and 8.2 kb in pediatric, and 6.4 kb and 5.5 kb in adult patients with ALL). TA in leukocytes was 3.2 TA/C for pediatric and 0.7 TA/C for adult patients. Notably, patients with high-risk pediatric ALL had a significantly higher TA of 6.6 TA/C compared to non-high-risk patients with 2.2 TA/C. The inhibition of telomerase with imetelstat ex vivo led to significant dose-dependent apoptosis of B-ALL cells. These results suggest that TL reflects clonal expansion and indicate that elevated TA correlates with high-risk pediatric ALL. In addition, telomerase inhibition induces apoptosis of B-ALL cells cultured in vitro. TL and TA might complement established markers for the identification of patients with high-risk ALL. Moreover, TA seems to be an effective therapeutic target; hence, telomerase inhibitors, such as imetelstat, may augment standard ALL treatment

    High prevalence of short telomeres in idiopathic porto-sinusoidal vascular disorder.

    Get PDF
    BACKGROUND Telomeres prevent damage to coding DNA as end-nucleotides are lost during mitosis. Mutations in telomere maintenance genes cause excessive telomere shortening, a condition known as short telomere syndrome (STS). One hepatic manifestation documented in STS is porto-sinusoidal vascular disorder (PSVD). METHODS As the etiology of many cases of PSVD remains unknown, this study explored the extent to which short telomeres are present in patients with idiopathic PSVD. RESULTS This monocentric cross-sectional study included patients with histologically defined idiopathic PSVD. Telomere length in 6 peripheral blood leukocyte subpopulations was assessed using fluorescent in situ hybridization and flow cytometry. Variants of telomere-related genes were identified using high-throughput exome sequencing. In total, 22 patients were included, of whom 16 (73%) had short (9/22) or very short (7/22) telomeres according to age-adjusted reference ranges. Fourteen patients (64%) had clinically significant portal hypertension. Shorter telomeres were more frequent in males (p = 0.005) and patients with concomitant interstitial lung disease (p < 0.001), chronic kidney disease (p < 0.001), and erythrocyte macrocytosis (p = 0.007). Portal hypertension (p = 0.021), low serum albumin level (p < 0.001), low platelet count (p = 0.007), and hyperbilirubinemia (p = 0.053) were also associated with shorter telomeres. Variants in known STS-related genes were identified in 4 patients with VSTel and 1 with STel. CONCLUSIONS Short and very short telomeres were highly prevalent in patients with idiopathic PSVD, with 31% presenting with variants in telomere-related genes. Telomere biology may play an important role in vascular liver disease development. Clinicians should consider measuring telomeres in any patient presenting with PSVD

    Siglec-7 represents a glyco-immune checkpoint for non-exhausted effector memory CD8+ T cells with high functional and metabolic capacities.

    Get PDF
    While inhibitory Siglec receptors are known to regulate myeloid cells, less is known about their expression and function in lymphocytes subsets. Here we identified Siglec-7 as a glyco-immune checkpoint expressed on non-exhausted effector memory CD8+ T cells that exhibit high functional and metabolic capacities. Seahorse analysis revealed higher basal respiration and glycolysis levels of Siglec-7+ CD8+ T cells in steady state, and particularly upon activation. Siglec-7 polarization into the T cell immune synapse was dependent on sialoglycan interactions in trans and prevented actin polarization and effective T cell responses. Siglec-7 ligands were found to be expressed on both leukemic stem cells and acute myeloid leukemia (AML) cells suggesting the occurrence of glyco-immune checkpoints for Siglec-7+ CD8+ T cells, which were found in patients' peripheral blood and bone marrow. Our findings project Siglec-7 as a glyco-immune checkpoint and therapeutic target for T cell-driven disorders and cancer

    Siglec-7 represents a glyco-immune checkpoint for non-exhausted effector memory CD8+ T cells with high functional and metabolic capacities

    Full text link
    While inhibitory Siglec receptors are known to regulate myeloid cells, less is known about their expression and function in lymphocytes subsets. Here we identified Siglec-7 as a glyco-immune checkpoint expressed on non-exhausted effector memory CD8+ T cells that exhibit high functional and metabolic capacities. Seahorse analysis revealed higher basal respiration and glycolysis levels of Siglec-7+ CD8+ T cells in steady state, and particularly upon activation. Siglec-7 polarization into the T cell immune synapse was dependent on sialoglycan interactions in trans and prevented actin polarization and effective T cell responses. Siglec-7 ligands were found to be expressed on both leukemic stem cells and acute myeloid leukemia (AML) cells suggesting the occurrence of glyco-immune checkpoints for Siglec-7+ CD8+ T cells, which were found in patients' peripheral blood and bone marrow. Our findings project Siglec-7 as a glyco-immune checkpoint and therapeutic target for T cell-driven disorders and cancer. Keywords: CD8+ T cells; Siglec-7; acute myeloid leukemia; hypersialylation; immune checkpoint; sialoglycans; tumor immunity and immunotherap
    • …
    corecore