1,982 research outputs found

    SUPERSYMMETRY REACH OF AN UPGRADED TEVATRON COLLIDER

    Get PDF
    We examine the capability of a s=2\sqrt{s}=2 TeV Tevatron ppˉp\bar p collider to discover supersymmetry, given a luminosity upgrade to amass 25 fb125\ fb^{-1} of data. We compare with the corresponding reach of the Tevatron Main Injector (1 fb11\ fb^{-1} of data). Working within the framework of minimal supergravity with gauge coupling unification and radiative electroweak symmetry breaking, we first calculate the regions of parameter space accessible via the clean trilepton signal from \tw_1\tz_2\to 3\ell +\eslt production, with detailed event generation of both signal and major physics backgrounds. The trilepton signal can allow equivalent gluino masses of up to mtg600700m_{\tg}\sim 600-700 GeV to be probed if m0m_0 is small. If m0m_0 is large, then mtg500m_{\tg}\sim 500 GeV can be probed for μ0\mu 0 and large values of m0m_0, the rate for \tz_2\to\tz_1\ell\bar{\ell} is suppressed by interference effects, and there is {\it no} reach in this channel. We also examine regions where the signal from \tw_1\overline{\tw_1}\to \ell\bar{\ell}+\eslt is detectable. Although this signal is background limited, it is observable in some regions where the clean trilepton signal is too small. Finally, the signal \tw_1\tz_2\to jets+\ell\bar{\ell} +\eslt can confirm the clean trilepton signal in a substantial subset of the parameter space where the trilepton signal can be seen. We note that although the clean trilepton signal may allow Tevatron experiments to identify signals in regions of parameter space beyond the reach of LEP II, the dilepton channels generally probe much the same region as LEP II.Comment: 19 page REVTEX file; a uuencoded PS file with PS figures is available via anonymous ftp at ftp://hep.fsu.edu/preprints/baer/FSUHEP950301.u

    Impact of Muon Anomalous Magnetic Moment on Supersymmetric Models

    Get PDF
    The recent measurement of a_\mu =\frac{g_\mu -2}{2} by the E821 Collaboration at Brookhaven deviates from the quoted Standard Model (SM) central value prediction by 2.6\sigma. The difference between SM theory and experiment may be easily accounted for in a variety of particle physics models employing weak scale supersymmetry (SUSY). Other supersymmetric models are distinctly disfavored. We evaluate a_\mu for various supersymmetric models, including minimal supergravity (mSUGRA), Yukawa unified SO(10) SUSY GUTs, models with inverted mass hierarchies (IMH), models with non-universal gaugino masses, gauge mediated SUSY breaking models (GMSB), anomaly-mediated SUSY breaking models (AMSB) and models with gaugino mediated SUSY breaking (inoMSB). Models with Yukawa coupling unification or multi-TeV first and second generation scalars are disfavored by the a_\mu measurement.Comment: 25 page REVTEX file with 10 PS figures. Minor rewording, typos corrected, references adde

    A Comparison of the Use of Binary Decision Trees and Neural Networks in Top Quark Detection

    Full text link
    The use of neural networks for signal vs.~background discrimination in high-energy physics experiment has been investigated and has compared favorably with the efficiency of traditional kinematic cuts. Recent work in top quark identification produced a neural network that, for a given top quark mass, yielded a higher signal to background ratio in Monte Carlo simulation than a corresponding set of conventional cuts. In this article we discuss another pattern-recognition algorithm, the binary decision tree. We have applied a binary decision tree to top quark identification at the Tevatron and found it to be comparable in performance to the neural network. Furthermore, reservations about the "black box" nature of neural network discriminators do not apply to binary decision trees; a binary decision tree may be reduced to a set of kinematic cuts subject to conventional error analysis.Comment: 14pp. Plain TeX + mtexsis.tex (latter available through 'get mtexsis.tex'.) Two postscript files avail. by emai

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    Yukawa-unified natural supersymmetry

    Get PDF
    Previous work on t-b-\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\sim125 GeV. As Yukawa unification requires large tan\beta\sim50, while EWFT requires rather light third generation squarks and low \mu\sim100-250 GeV, B-physics constraints from BR(B\to X_s\gamma) and BR(B_s\to \mu+\mu-) can be severe. We are able to find models with EWFT \Delta\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1-2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A\to \mu+\mu- decay might allow a determination of tan\beta\sim50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e+e- collider with \sqrt{s}\sim0.5 TeV.Comment: 18 pages, 7 figures, pdflatex; 3 references adde

    Determining the parameters of the Minimal Supergravity Model from 2l + E_T^{miss} + (jets) final states at LHC

    Full text link
    We analyse the events with two same-flavour, opposite-sign leptons + ETmissE_T^{miss} + (jets) as expected in pp collisions at LHC within the framework of the minimal Supergravity Model. The objective is the determination of the parameters m_0 and m_{1/2} of this model (for a given value of tanβ\tan\beta). The signature l+l+ETmissl^+ l^- + E_T^{miss} + (jets) selects the leptonic decays of χ~20\tilde{\chi}^0_2, χ~20χ~10l+l\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 l^+ l^- , χ~20l~L,R±lχ~10l+l\tilde{\chi}^0_2 \to \tilde{l}_{L,R}^{\pm} l^{\mp} \to \tilde{\chi}^0_1 l^+ l^-. We exploit the fact that the invariant dilepton mass distribution has a pronounced structure with a sharp edge at the kinematical endpoint even in such an inclusive final state over a significant part of parameter space. We determine the domain of parameter space where the edge is expected to be visible. We show that a measurement of this edge already constrains the model parameters essentially to three lines in the (m0,m1/2m_0, m_{1/2}) parameter plane. We work out a strategy to discriminate between the three-body leptonic decays of χ~20\tilde{\chi}^0_2 and the decays into sleptons l~L,R\tilde{l}_{L,R}. This procedure may make it possible to get information on SUSY particle masses already with low luminosity, L_{int}=10^3 pb^{-1}.Comment: 30 page latex file including 19 PCX figure

    Sparticle mass spectra from SU(5) SUSY GUT models with bτb-\tau Yukawa coupling unification

    Full text link
    Supersymmetric grand unified models based on the gauge group SU(5) often require in addition to gauge coupling unification, the unification of b-quark and τ\tau-lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space under the condition of bτb-\tau Yukawa coupling unification using 2-loop MSSM RGEs including full 1-loop threshold effects. The Yukawa-unified solutions break down into two classes. Solutions with low tan\beta ~3-11 are characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these solutions would be beyond LHC reach, although they contain a light Higgs scalar with mass <123 GeV and so may be excluded should the LHC Higgs hint persist. The second class of solutions occurs at large tan\beta ~35-60, and are a subset of tbτt-b-\tau unified solutions. Constraining only bτb-\tau unification to ~5% favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be accessible to LHC searches. While our bτb-\tau unified solutions can be consistent with a picture of neutralino-only cold dark matter, invoking additional moduli or Peccei-Quinn superfields can allow for all of our Yukawa-unified solutions to be consistent with the measured dark matter abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model

    Full text link
    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with s=0.5\sqrt{s}=0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided \tan\beta \alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important ``dark matter allowed'' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ\mu and M2M_2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to conform with published versio
    corecore