55 research outputs found

    Large Linear Magnetoresistance in Heavily-Doped Nb:SrTiO\u3csub\u3e3\u3c/sub\u3e Epitaxial Thin Films

    Get PDF
    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices

    Spin seebeck effect of Y3Fe5O12 (YIG) prepared by sol-gel synthesis

    No full text

    Y3Fe5O12 (YIG) Spin-Thermoelectric Module prepared by Sol-Gel Method

    No full text

    Origin of insulating weak-ferromagnetic phase in ultra-thin La0.67Sr0.33MnO3 films on SrTiO3 substrate

    No full text
    We investigate the origin of insulating weak-ferromagnetic phase in ultra-thin epitaxial La0.67Sr0.33MnO3 (LSMO) films on SrTiO3 substrate using density functional theory calculation together with X-ray linear dichroism (XLD). The calculations show that symmetry breaking of the crystal field at the LSMO surface largely lowers the energy level of Mn d3z2 orbital at the surface and leads to full occupancy of the d3z2 orbital in majority spin channel, and XLD spectra clearly show the preferential occupation of Mn d3z2 orbital at the surface. Such an orbital reconstruction and charge redistribution in the ultra-thin films largely suppresses double-exchange interaction and favors super-exchange interaction, resulting in G-type antiferromagnetic spin ordering and insulating state. The anisotropic exchange interaction due to spin-orbital interaction leads to spin canting, and thus the films show weak ferromagnetism

    Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    Get PDF
    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields1231sciescopu
    corecore