14 research outputs found
CMB Spectral -Distortion of Multiple Inflation Scenario
In multiple inflation scenario having two inflations with an intermediate
matter-dominated phase, the power spectrum is estimated to be enhanced on
scales smaller than the horizon size at the beginning of the second inflation,
. We require to make sure that
the enhanced power spectrum is consistent with large scale observation of
cosmic microwave background (CMB). We consider the CMB spectral distortions
generated by the dissipation of acoustic waves to constrain the power spectrum.
The -distortion value can be times larger than the expectation of the
standard CDM model () for , while the
-distortion is hardly affected by the enhancement of the power spectrum.Comment: 16 pages, 5 figure
Search for invisible axion dark matter with a multiple-cell haloscope
We present the first results of a search for invisible axion dark matter
using a multiple-cell cavity haloscope. This cavity concept was proposed to
provide a highly efficient approach to high mass regions compared to the
conventional multiple-cavity design, with larger detection volume, simpler
detector setup, and unique phase-matching mechanism. Searches with a
double-cell cavity superseded previous reports for the axion-photon coupling
over the mass range between 13.0 and 13.9eV. This result not only
demonstrates the novelty of the cavity concept for high-mass axion searches,
but also suggests it can make considerable contributions to the next-generation
experiments.Comment: 6 pages, 5 figure
Search for the Sagittarius Tidal Stream of Axion Dark Matter around 4.55 eV
We report the first search for the Sagittarius tidal stream of axion dark
matter around 4.55 eV using CAPP-12TB haloscope data acquired in March of
2022. Our result excluded the Sagittarius tidal stream of
Dine-Fischler-Srednicki-Zhitnitskii and Kim-Shifman-Vainshtein-Zakharov axion
dark matter densities of and GeV/cm,
respectively, over a mass range from 4.51 to 4.59 eV at a 90% confidence
level.Comment: 6 pages, 7 Figures, PRD Letter accepte
Extensive search for axion dark matter over 1\,GHz with CAPP's Main Axion eXperiment
We report an extensive high-sensitivity search for axion dark matter above
1\,GHz at the Center for Axion and Precision Physics Research (CAPP). The
cavity resonant search, exploiting the coupling between axions and photons,
explored the frequency (mass) range of 1.025\,GHz (4.24\,eV) to 1.185\,GHz
(4.91\,eV). We have introduced a number of innovations in this field,
demonstrating the practical approach of optimizing all the relevant parameters
of axion haloscopes, extending presently available technology. The CAPP 12\,T
magnet with an aperture of 320\,mm made of NbSn and NbTi superconductors
surrounding a 37-liter ultralight-weight copper cavity is expected to convert
DFSZ axions into approximately microwave photons per second. A powerful
dilution refrigerator, capable of keeping the core system below 40\,mK,
combined with quantum-noise limited readout electronics, achieved a total
system noise of about 200\,mK or below, which corresponds to a background of
roughly photons per second within the axion bandwidth. The
combination of all those improvements provides unprecedented search
performance, imposing the most stringent exclusion limits on axion--photon
coupling in this frequency range to date. These results also suggest an
experimental capability suitable for highly-sensitive searches for axion dark
matter above 1\,GHz.Comment: A detailed axion dark matter article with 27 pages, 22 figure
Tunable photonic crystal haloscope for high-mass axion searches
In the search for axion dark matter, the cavity-based haloscope offers the most sensitive approach to the theoretically interesting models in the microwave region. However, experimental searches have been limited to relatively low masses up to a few tens of
μ
eV
, benefiting from large detection volumes and high-quality factors for a given experimental setup. We propose a new cavity design suitable for axion searches in higher mass regions with enhanced performance. The design features a periodic arrangement of dielectric material in a conventional conducting cavity where the resonant frequency is determined by the interspace. This photonic crystal haloscope can make full use of a given volume even at high frequencies while substantially improving the cavity quality factor. An auxetic structure is considered to deploy the array for two-dimensional frequency tuning. We present the characteristics of this haloscope design and demonstrate its feasibility for high-mass axion searches.11Nsciescopu
Simulation of classical axion electrodynamics using COMSOL multiphysics
The axion is a hypothetical particle motivated to address the strong CP problem, and is one of the appealing dark matter candidates. Numerous experimental searches for dark matter axions have been proposed relying on their coupling with photons. The classical equations of motion for the axion-photon coupling are well known but need to be fully computed for complex experimental setups. The partial differential equations of axion electrodynamics can be numerically solved using finite element methods. In this work, we simulate axion electrodynamics using COMSOL Multiphyics, a commercially available simulation software, for various experimental schemes, including the dish antenna haloscope, cavity haloscope, dielectric haloscope, and axion-photon regeneration. We show that the numerical results are in good agreement with the analytical solutions. © 2023, The Korean Physical Society.11Nsciescopuskc
Analytical considerations for optimal axion haloscope design
The cavity haloscope provides a highly sensitive method to search for dark matter axions in the microwave regime. Experimental attempts to enhance the sensitivity have focused on improving major aspects, such as producing strong magnetic fields, increasing cavity quality factors, and achieving lowest possible noise temperatures. Minor details, however, also need to be carefully considered in realistic experimental designs. They are associated with non-uniform magnetic fields over the detection volume, noise propagation under attenuation and temperature gradients, and thermal disequilibrium in the cavity system. We take analytical approaches to these topics and offer optimal treatments for improved performance.11Nsciescopu
2D TMD Channel Transistors with ZnO Nanowire Gate for Extended Nonvolatile Memory Applications
© 2020 Wiley-VCH GmbH 2D transition metal dichalcogenides (TMDs) have been extensively studied due to their excellent physical properties. Mixed dimensional devices including 2D materials have also been studied, motivated by the possibility of any synergy effect from unique structures. However, only few such studies have been conducted. Here, semiconducting 1D ZnO nanowires are used as thin gate material to support 2D TMD field effect transistors (FETs) and 2D stack-based interface trap nonvolatile memory. For the trap memory, deep level electron traps formed at the first MoS2/second MoS(2)stack interface are exploited, since the first MoS(2)is treated in an atomic layer deposition chamber for a short while. On the one hand, a complementary inverter type memory device can also be achieved using a long single ZnO wire as a common gate to simultaneously support both n- and p-channel TMD FETs. In addition, it is found that the semiconducting ZnO nanowire itself operates as an n-type channel when the TMD materials can become a top-gate to charge the ZnO channel. It means that 2D (bottom gated) and 1D channel (top gated) FETs are respectively operational in a single device structure. The 1D-2D mixed devices seem deserving broad attention in both aspects of novelty and functionality11sciescopu
Dramatic Reduction of Contact Resistance via Ultrathin LiF in Two-Dimensional MoS2 Field Effect Transistors
Molybdenum disulfide (MoS2) has been regarded as one of the most important n-type two-dimensional (2D) transition metal dichalcogenide semiconductors for nanoscale electron devices. Relatively high contact resistance (RC) remains as an issue in the 2D-devices yet to be resolved. Reliable technique is very compelling to practically produce low RC values in device electronics, although scientific approaches have been made to obtain a record-low RC. To resolve this practical issue, we here use thermal-evaporated ultrathin LiF between channel and source/drain metal to fabricate 2D-like MoS2 field effect transistors (FETs) with minimum RC. Under 4-bar FET method, RC less than similar to 600 Omega.mu m is achieved from the LiF/Au contact MoS2 FET. Our normal 2-bar FET with LiF thus shows the same mobility as that of 4-bar FET that should have no RC in principle. On the basis of these results, ultrathin LiF is also applied for transparent conducting oxide contact, successfully enabling transparent MoS2 FETs.11Nsciescopu
2D TMD Channel Transistors with ZnO Nanowire Gate for Extended Nonvolatile Memory Applications
© 2020 Wiley-VCH GmbH 2D transition metal dichalcogenides (TMDs) have been extensively studied due to their excellent physical properties. Mixed dimensional devices including 2D materials have also been studied, motivated by the possibility of any synergy effect from unique structures. However, only few such studies have been conducted. Here, semiconducting 1D ZnO nanowires are used as thin gate material to support 2D TMD field effect transistors (FETs) and 2D stack-based interface trap nonvolatile memory. For the trap memory, deep level electron traps formed at the first MoS2/second MoS(2)stack interface are exploited, since the first MoS(2)is treated in an atomic layer deposition chamber for a short while. On the one hand, a complementary inverter type memory device can also be achieved using a long single ZnO wire as a common gate to simultaneously support both n- and p-channel TMD FETs. In addition, it is found that the semiconducting ZnO nanowire itself operates as an n-type channel when the TMD materials can become a top-gate to charge the ZnO channel. It means that 2D (bottom gated) and 1D channel (top gated) FETs are respectively operational in a single device structure. The 1D-2D mixed devices seem deserving broad attention in both aspects of novelty and functionality11sciescopu