70 research outputs found

    Adaptive IIR filtering using the homotopy continuation method

    Get PDF
    The objective of this study is to develop an algorithmic approach for solving problems associated with the convergence to the local minima in adaptive IIR filtering. The approach is based on a numerical method called the homotopy continuation method;The homotopy continuation method is a solution exhaustive method for calculating all solutions of a set of nonlinear equations. The globally optimum filter coefficients correspond to the solutions with minimum mean square error. In order to apply the technique to the adaptive IIR filtering problem, the homotopy continuation method is modified to handle a set of nonlinear polynomials with time-varying coefficients. Then, the adaptive IIR filtering problem is formulated in terms of a set of nonlinear polynomials using the mean square output error minimization approach. The adaptive homotopy continuation method (AHCM) for the case of time-varying coefficients is then applied to solve the IIR filtering problem. After demonstrating the feasibility of the approach, problems encountered in the basic AHCM algorithm are discussed and alternative structures of the filter are proposed. In the development of the proposed algorithm and its variations, the instability problem which is a second disadvantage of IIR filters is also considered;Simulation results for a system identification example validate the proposed algorithm by determining the filter coefficients at the global minimum position. For further validation, the AHCM algorithm is then applied to an adaptive noise cancellation application in ultrasonic nondestructive evaluation. Ultrasonic inspection signal reflections from defects and material grain boundaries are considered. The AHCM algorithm is applied to the noise cancellation mode to filter out the material noise. The experimental results show that the proposed algorithm shows considerable promise for real as well as for simulated data

    Adversarial Fine-tuning using Generated Respiratory Sound to Address Class Imbalance

    Full text link
    Deep generative models have emerged as a promising approach in the medical image domain to address data scarcity. However, their use for sequential data like respiratory sounds is less explored. In this work, we propose a straightforward approach to augment imbalanced respiratory sound data using an audio diffusion model as a conditional neural vocoder. We also demonstrate a simple yet effective adversarial fine-tuning method to align features between the synthetic and real respiratory sound samples to improve respiratory sound classification performance. Our experimental results on the ICBHI dataset demonstrate that the proposed adversarial fine-tuning is effective, while only using the conventional augmentation method shows performance degradation. Moreover, our method outperforms the baseline by 2.24% on the ICBHI Score and improves the accuracy of the minority classes up to 26.58%. For the supplementary material, we provide the code at https://github.com/kaen2891/adversarial_fine-tuning_using_generated_respiratory_sound.Comment: accepted in NeurIPS 2023 Workshop on Deep Generative Models for Health (DGM4H

    Self-Contrastive Learning: Single-viewed Supervised Contrastive Framework using Sub-network

    Full text link
    Contrastive loss has significantly improved performance in supervised classification tasks by using a multi-viewed framework that leverages augmentation and label information. The augmentation enables contrast with another view of a single image but enlarges training time and memory usage. To exploit the strength of multi-views while avoiding the high computation cost, we introduce a multi-exit architecture that outputs multiple features of a single image in a single-viewed framework. To this end, we propose Self-Contrastive (SelfCon) learning, which self-contrasts within multiple outputs from the different levels of a single network. The multi-exit architecture efficiently replaces multi-augmented images and leverages various information from different layers of a network. We demonstrate that SelfCon learning improves the classification performance of the encoder network, and empirically analyze its advantages in terms of the single-view and the sub-network. Furthermore, we provide theoretical evidence of the performance increase based on the mutual information bound. For ImageNet classification on ResNet-50, SelfCon improves accuracy by +0.6% with 59% memory and 48% time of Supervised Contrastive learning, and a simple ensemble of multi-exit outputs boosts performance up to +1.5%. Our code is available at https://github.com/raymin0223/self-contrastive-learning.Comment: AAAI 202

    Fine-Tuning the Retrieval Mechanism for Tabular Deep Learning

    Full text link
    While interests in tabular deep learning has significantly grown, conventional tree-based models still outperform deep learning methods. To narrow this performance gap, we explore the innovative retrieval mechanism, a methodology that allows neural networks to refer to other data points while making predictions. Our experiments reveal that retrieval-based training, especially when fine-tuning the pretrained TabPFN model, notably surpasses existing methods. Moreover, the extensive pretraining plays a crucial role to enhance the performance of the model. These insights imply that blending the retrieval mechanism with pretraining and transfer learning schemes offers considerable potential for advancing the field of tabular deep learning.Comment: Table Representation Learning Workshop at NeurIPS 202

    Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation

    Full text link
    As an emerging field in Machine Learning, Explainable AI (XAI) has been offering remarkable performance in interpreting the decisions made by Convolutional Neural Networks (CNNs). To achieve visual explanations for CNNs, methods based on class activation mapping and randomized input sampling have gained great popularity. However, the attribution methods based on these techniques provide lower resolution and blurry explanation maps that limit their explanation power. To circumvent this issue, visualization based on various layers is sought. In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique and aggregate them to reach a fine-grained and complete explanation. We also propose a layer selection strategy that applies to the whole family of CNN-based models, based on which our extraction framework is applied to visualize the last layers of each convolutional block of the model. Moreover, we perform an empirical analysis of the efficacy of derived lower-level information to enhance the represented attributions. Comprehensive experiments conducted on shallow and deep models trained on natural and industrial datasets, using both ground-truth and model-truth based evaluation metrics validate our proposed algorithm by meeting or outperforming the state-of-the-art methods in terms of explanation ability and visual quality, demonstrating that our method shows stability regardless of the size of objects or instances to be explained.Comment: 9 pages, 9 figures, Accepted at the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21

    Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on Respiratory Sound Classification

    Full text link
    Respiratory sound contains crucial information for the early diagnosis of fatal lung diseases. Since the COVID-19 pandemic, there has been a growing interest in contact-free medical care based on electronic stethoscopes. To this end, cutting-edge deep learning models have been developed to diagnose lung diseases; however, it is still challenging due to the scarcity of medical data. In this study, we demonstrate that the pretrained model on large-scale visual and audio datasets can be generalized to the respiratory sound classification task. In addition, we introduce a straightforward Patch-Mix augmentation, which randomly mixes patches between different samples, with Audio Spectrogram Transformer (AST). We further propose a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space. Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.Comment: INTERSPEECH 2023, Code URL: https://github.com/raymin0223/patch-mix_contrastive_learnin
    • …
    corecore