623 research outputs found

    Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems

    Get PDF
    This paper deals with the resolution of inverse problems in a periodic setting or, in other terms, the reconstruction of periodic continuous-domain signals from their noisy measurements. We focus on two reconstruction paradigms: variational and statistical. In the variational approach, the reconstructed signal is solution to an optimization problem that establishes a tradeoff between fidelity to the data and smoothness conditions via a quadratic regularization associated to a linear operator. In the statistical approach, the signal is modeled as a stationary random process defined from a Gaussian white noise and a whitening operator; one then looks for the optimal estimator in the mean-square sense. We give a generic form of the reconstructed signals for both approaches, allowing for a rigorous comparison of the two.We fully characterize the conditions under which the two formulations yield the same solution, which is a periodic spline in the case of sampling measurements. We also show that this equivalence between the two approaches remains valid on simulations for a broad class of problems. This extends the practical range of applicability of the variational method

    Exclusion processes: short range correlations induced by adhesion and contact interactions

    Get PDF
    We analyze the out-of-equilibrium behavior of exclusion processes where agents interact with their nearest neighbors, and we study the short-range correlations which develop because of the exclusion and other contact interactions. The form of interactions we focus on, including adhesion and contact-preserving interactions, is especially relevant for migration processes of living cells. We show the local agent density and nearest-neighbor two-point correlations resulting from simulations on two dimensional lattices in the transient regime where agents invade an initially empty space from a source and in the stationary regime between a source and a sink. We compare the results of simulations with the corresponding quantities derived from the master equation of the exclusion processes, and in both cases, we show that, during the invasion of space by agents, a wave of correlations travels with velocity v(t) ~ t^(-1/2). The relative placement of this wave to the agent density front and the time dependence of its height may be used to discriminate between different forms of contact interactions or to quantitatively estimate the intensity of interactions. We discuss, in the stationary density profile between a full and an empty reservoir of agents, the presence of a discontinuity close to the empty reservoir. Then, we develop a method for deriving approximate hydrodynamic limits of the processes. From the resulting systems of partial differential equations, we recover the self-similar behavior of the agent density and correlations during space invasion

    Automatic quantification of the microvascular density on whole slide images, applied to paediatric brain tumours

    Full text link
    Angiogenesis is a key phenomenon for tumour progression, diagnosis and treatment in brain tumours and more generally in oncology. Presently, its precise, direct quantitative assessment can only be done on whole tissue sections immunostained to reveal vascular endothelial cells. But this is a tremendous task for the pathologist and a challenge for the computer since digitised whole tissue sections, whole slide images (WSI), contain typically around ten gigapixels. We define and implement an algorithm that determines automatically, on a WSI at objective magnification 40×40\times, the regions of tissue, the regions without blur and the regions of large puddles of red blood cells, and constructs the mask of blur-free, significant tissue on the WSI. Then it calibrates automatically the optical density ratios of the immunostaining of the vessel walls and of the counterstaining, performs a colour deconvolution inside the regions of blur-free tissue, and finds the vessel walls inside these regions by selecting, on the image resulting from the colour deconvolution, zones which satisfy a double-threshold criterion. A mask of vessel wall regions on the WSI is produced. The density of microvessels is finally computed as the fraction of the area of significant tissue which is occupied by vessel walls. We apply this algorithm to a set of 186 WSI of paediatric brain tumours from World Health Organisation grades I to IV. The segmentations are of very good quality although the set of slides is very heterogeneous. The computation time is of the order of a fraction of an hour for each WSI on a modest computer. The computed microvascular density is found to be robust and strongly correlates with the tumour grade. This method requires no training and can easily be applied to other tumour types and other stainings

    Head and neck: Salivary gland tumors: an overview

    Get PDF
    Review on Head and neck: Salivary gland tumors: an overview, with data on clinics, and the genes involved

    Head and Neck: Paraganglioma: an overview

    Get PDF
    Review on Head and Neck paragangliomas, with data on clinics, and the genes involved
    corecore