3 research outputs found

    UV-B Radiation as a Novel Tool to Modulate the Architecture of In Vitro Grown <i>Mentha spicata</i> (L.)

    No full text
    In vitro culturing can generate plants with a distorted morphology. Some distortions affect the plant’s survival after transfer to an ex vitro environment, while others can affect the aesthetic value. Therefore, exogenous hormones are often applied in in vitro cultures to modulate plant architecture. In this study, it was hypothesised that regulatory effects of UV-B radiation on plant morphology can be exploited under in vitro conditions, and that UV exposure will result in sturdier, less elongated plants with more branches and smaller leaves, mediated by changes in plant hormones. Plants were grown in tissue-culture containers and exposed to ~0.22 W m−2 UV-B for 8 days. Subsequently, plants were transferred to soil and monitored for a further 7 days. Results show that UV induced a marked change in architecture with a significant increase in axillary branches, and reductions in leaf area, plant height and root weight. These changes were associated with significant alterations in concentrations of hormones, including IAA, GA7, GA3 and iP–9–G. Changes in hormone concentrations suggest a regulatory, rather than a stress response to UV-B. Therefore, it is proposed that the application of UV in in vitro culture can be an innovative approach to manipulate plant architecture

    UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana

    No full text
    UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation
    corecore