3 research outputs found

    Spatio Temporal Land Use Land Cover Change Mapping of Malete Elemere: Implication on Development Planning of Emerging Communities

    Full text link
    The use of Ecosystem and Biodiversity mapping, land use land cover change detection has been advocated in preparation of developmental master plan in towns and cities. Noticeable changes have been observed within Malete Elemere community since the establishment of Kwara State University Malete, yet its spatial pattern and socio ecological implication have not been investigated. This work seek to determine and produce land cover land use change map of Malete Elemere over the last 10 years and post 15 year periods through change detection techniques so as to evaluate the impact of the establishment of Kwara State university on the settlement spatial development. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite images of 2005, 2010 and 2015 of the study area were acquired from USGS at spatial resolution of 30 m. Radiometric correction were applied to all the images using radiance modules in Idrisi32 with radiance spectral value set at DN 0 (Lmin) and 255 (Lmax). An unsupervised classification was carried out on the composite images of bands 4,3,2,1 for all the selected years to identify possible maximum spectral reflectance classes, this was followed by supervised classification using training sample from the field survey from which image to image spatio-temporal changes statistics were extracted. To generate a prediction of LULC changes for 2025, Cellular Automata-Markovian transition estimator (CA-Markov) in Idrisi32 was used. Various Kappa statistics was used to evaluate the performance of prediction with an average K statistics of above 0.83 recorded. The result shows that built up area gained an astronomical increase (180%) between 2005 and 2015 while forest lost significantly (34%) within the same periods, with most of the gains occurring in 2010 and 2015 after the establishment of KWASU. By 2025, two Major growth pole centres will emerge along Malete Elemere Axis and one minor in Jenkunu Omoni Axis which will exert a great stress on infrastructural facilities and may create a chaotic condition if left unattended to

    Grazing game: a learning tool for adaptive management in response to climate variability in semiarid areas of Ghana

    No full text
    In West Africa, the most extreme predicted effects of climate change are expected to occur in desert and grassland areas. It is crucial for local populations in this region to better understand what such projections signify to them to identify sound adaptation policies and interventions. We developed a game, called the "grazing game," and conducted trials with local farmers at multiple study sites as a learning tool to better understand their behavior in response to climate variability under semiarid conditions in West Africa and to facilitate social learning. The grazing game was designed to reveal the processes that lead to overgrazing and desertification based on the players' interactions with environmental conditions and their resulting decisions. We conducted a total of 23 game trials around the Vea catchment of the Upper East Region of Ghana involving 243 individual farmers. From the games, local farmers exhibited a very positive response to how the game replicated rainfall fluctuations that they currently experience and led to the identification of coping strategies, such as selling cows, seeking government assistance, and engaging in alternative livelihood means. Participating farmers tended to avoid uncertain situations and sought to simplify their decisions, and the game provided insight into the rich local ecological knowledge of environmental indicators. Based on the game trial results, we found that the game facilitated instrumental and communicative learning among the players and facilitators. Further, the game served as a platform where players could share their views, knowledge, and perceptions of climate-related issues

    An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana

    No full text
    Soil loss is not limited to change from forest or woodland to other land uses/covers. It may occur when there is agricultural land-use/cover modification or conversion. Soil loss may influence loss of carbon from the soil, hence implication on greenhouse gas emission. Changing land use could be considered actually or potentially successful in adapting to climate change, or may be considered maladaptation if it creates environmental degradation. In semi-arid northern Ghana, changing agricultural practices have been identified amongst other climate variability and climate change adaptation measures. Similarly, some of the policies aimed at improving farm household resilience toward climate change impact might necessitate land use change. The heterogeneity of farm household (agents) cannot be ignored when addressing land use/cover change issues, especially when livelihood is dependent on land. This paper therefore presents an approach for simulating soil loss from an agro-ecosystem using multi-agent simulation (MAS). We adapted a universal soil loss equation as a soil loss sub-model in the Vea-LUDAS model (a MAS model). Furthermore, for a 20-year simulation period, we presented the impact of agricultural land-use adaptation strategy (maize cultivation credit i.e., maize credit scenario) on soil loss and compared it with the baseline scenario i.e., business-as-usual. Adoption of maize as influenced by maize cultivation credit significantly influenced agricultural land-use change in the study area. Although there was no significant difference in the soil loss under the tested scenarios, the incorporation of human decision-making in a temporal manner allowed us to view patterns that cannot be seen in single step modeling. The study shows that opening up cropland on soil with a high erosion risk has implications for soil loss. Hence, effective measures should be put in place to prevent the opening up of lands that have high erosion risk
    corecore