7 research outputs found

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link

    Saturn's equinoctial auroras

    Full text link
    We present the first images of Saturn's conjugate equinoctial auroras, obtained in early 2009 using the Hubble Space Telescope. We show that the radius of the northern auroral oval is similar to 1.5 degrees smaller than the southern, indicating that Saturn's polar ionospheric magnetic field, measured for the first time in the ionosphere, is similar to 17% larger in the north than the south. Despite this, the total emitted UV power is on average similar to 17% larger in the north than the south, suggesting that field-aligned currents (FACs) are responsible for the emission. Finally, we show that individual auroral features can exhibit distinct hemispheric asymmetries. These observations will provide important context for Cassini observations as Saturn moves from southern to northern summer

    A Brief Review of Ultraviolet Auroral Emissions on Giant Planets

    Full text link
    The morphologies of the ultraviolet auroral emissions on the giant gas planets, Jupiter and Saturn, have conveniently been described with combinations of a restricted number of basic components. Although this simplified view is very handy for a gross depiction of the giant planets’ aurorae, it fails to scrutinize the diversity and the dynamics of the actual features that are regularly observed with the available ultraviolet imagers and spectrographs. In the present review, the typical morphologies of Jupiter and Saturn’s aurorae are represented with an updated and more accurate set of components. The use of sketches, rather than images, makes it possible to compile all these components in a single view and to put aside ultraviolet imaging technical issues that are blurring the emission sources, thus preventing one from disentangling the different auroral signatures. The ionospheric and magnetospheric processes to which these auroral features allude can then be more easily accounted. In addition, the use of components of the same kind for both planets may help to put forward similarities and differences between Jupiter and Saturn. The case of the ice giants Uranus and Neptune is much less compelling since their weak auroral emissions are very poorly documented and one can only speculate about their origin. This review presents a current perspective that will inevitably evolve in the future, especially with upcoming observing campaigns and forthcoming missions like Juno

    A Brief Review of Ultraviolet Auroral Emissions on Giant Planets

    No full text

    New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus

    No full text
    corecore