81 research outputs found

    Chronic Thromboembolic Pulmonary Hypertension

    Get PDF

    Service oriented centered e-health solution for monitoring and preventing chronic diseases

    Get PDF
    The modern and continuously changing lifestyles in almost all parts of the world resulted in an increase in the incidence of chronic diseases (CDs). To reduce risks associated with chronic diseases, health professionals are studying various clinical solutions. As a result of recent advances in sensing technology, wireless communications, and distributed communication, the monitoring of patients\u27 health condition and the elaboration of prevention plans are considered the most promising solutions for the treatment of chronic diseases. In this paper, we propose a novel framework for monitoring chronic diseases and tracking their vital signs. The framework relies on the service orientation concepts and standards to integrate various subsystems. Monitoring of subjects\u27 health condition, using various sensors and wireless devices, aims to proactively detect any risk of chronic diseases. The system will allow generating and customizing preventive plans dynamically according to the subject\u27s health profile and context while considering many impelling parameters. As a proof of concept of our monitoring and tracking schemes, we have considered a case study for which we have collected and analyzed preliminary data

    AnaBench: a Web/CORBA-based workbench for biomolecular sequence analysis

    Get PDF
    Affiliation: Département de biochimie, Faculté de médecine, Université de MontréalBACKGROUND:Sequence data analyses such as gene identification, structure modeling or phylogenetic tree inference involve a variety of bioinformatics software tools. Due to the heterogeneity of bioinformatics tools in usage and data requirements, scientists spend much effort on technical issues including data format, storage and management of input and output, and memorization of numerous parameters and multi-step analysis procedures.RESULTS:In this paper, we present the design and implementation of AnaBench, an interactive, Web-based bioinformatics Analysis workBench allowing streamlined data analysis. Our philosophy was to minimize the technical effort not only for the scientist who uses this environment to analyze data, but also for the administrator who manages and maintains the workbench. With new bioinformatics tools published daily, AnaBench permits easy incorporation of additional tools. This flexibility is achieved by employing a three-tier distributed architecture and recent technologies including CORBA middleware, Java, JDBC, and JSP. A CORBA server permits transparent access to a workbench management database, which stores information about the users, their data, as well as the description of all bioinformatics applications that can be launched from the workbench.CONCLUSION:AnaBench is an efficient and intuitive interactive bioinformatics environment, which offers scientists application-driven, data-driven and protocol-driven analysis approaches. The prototype of AnaBench, managed by a team at the Université de Montréal, is accessible on-line at: http://malawimonas.bcm.umontreal.ca:8091/anabench. Please contact the authors for details about setting up a local-network AnaBench site elsewhere

    Rancang Bangun Robot Tank Automatik Pendeteksi Halangan dengan Kendali Fuzzy Logic

    Get PDF
    Robotics is a field of science that is developing rapidly, One of Robotic field is a wheeled robot whose sample application allows robots to explore automatically. But today, more research on the application of artificial intelligence in robot control is aimed at obtaining sophisticated kinematic control. In this final project, a wheeled robot will be designed with the ability to detect obstacles. As a control object is a robot tank that both wheels use a belt wheel and have a separate DC motor. A fuzzy logic controller functions to regulate the speed and direction of the robot's motion based on the input of the ultrasonic sensor. The design of robots based on the embedded microcontroller is designed using the C language. From the test results, that fuzzy logic can be embedded in the ATmega328 microcontroller control unit on Arduino Uno, so that a robotic motion can be avoided that can avoid obstacles properly. The closer the obstacle distance results in the sharpening direction of the robot and the more rigorous robot movement
    • …
    corecore