11 research outputs found
Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26
peer reviewedThis paper is the first to investigate the production and partial characterization of the chitinase enzyme from a moderately halophilic bacterium Planococcus rifitoensis strain M2-26, earlier isolated from a shallow salt lake in Tunisia. The impact of salt, salinity concentration, pH, carbon and nitrogen sources on chitinase production and activity have been determined. This is the first report on a high salt-tolerant chitinase from P. rifitoensis, since it was active at high salinity (from 5 to 30% NaCl) as well as in the absence of salt. This enzyme showed optimal activity at 70 C and retained up to 82 and 66% of its original activity at 80 or 90 C, respectively. The activity of the enzyme was also shown over a wide pH range (from 5 to 11). For characterization of the enzyme activity, the chitinase secreted in the culture supernatant was partially purified. The preliminary study of the concentrated dialysed supernatant on native PAGE showed at least three
chitinases produced by strain M2-26, with highest activity approximately at 65 kDa. Thus, the thermo-tolerant and high salt-tolerant chitinases produced by P. rifitoensis strain M2-26 could be useful for application in diverse areas such as biotechnology and agro-industry
Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities
The present paper described the first green synthesis of silver nanoparticles (AgNPs) from the extremophile plant Aeonium haworthii. The characterization of the biosynthesized silver nanoparticles was carried out by using UV-Vis, FTIR and STM analysis. The antioxidant, antidiabetic and antimicrobial properties were also reported. The newly described AgNPs were spherical in shape and had a size of 35–55 nm. The lowest IC50 values measured by the DPPH assay indicate the superior antioxidant behavior of our AgNPs as opposed to ascorbic acid. The silver nanoparticles show high antidiabetic activity determined by the inhibitory effect of α amylase as compared to the standard Acarbose. Moreover, the AgNPs inhibit bacterial growth owing to a bactericidal effect with the MIC values varying from 0.017 to 1.7 µg/mL. The antifungal action was evaluated against Candida albicans, Candida tropicalis, Candida glabrata, Candida sake and non-dermatophytic onychomycosis fungi. A strong inhibitory effect on Candida factors’ virulence was observed as proteinase and phospholipase limitations. In addition, the microscopic observations show that the silver nanoparticles cause the eradication of blastospores and block filamentous morphogenesis. The combination of the antioxidant, antimicrobial and antidiabetic behaviors of the new biosynthesized silver nanoparticles highlights their promising use as natural phytomedicine agents
Complete genome sequencing of Virgibacillus spp isolated from Sebkhat ElMeleh in Tunisia involved its beneficial interest for agriculture
<p>Whole genome sequence of PGP Virgibacillus spp strain SM isolated from Sebkhet Elmeleh located in Tunisia, involved PGP functional genes.</p>
Antioxidant and Antimicrobial Potentials of Seed Oil from Carthamus tinctorius L. in the Management of Skin Injuries
Infection of skin injuries by pathogenic microbial strains is generally associated if not treated with a lasting wound bed oxidative stress status, a delay in healing process, and even wound chronicity with several human health complications. The aim of the current study was to explore the antioxidant and antimicrobial potentialities of safflower (Carthamus tinctorius L.) extracted oil from seeds by cold pressing which would be beneficial in the management of skin wounds. Antioxidant capacity of the oil was evaluated (scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP)). Total phenolic, total flavonoid, total carotenoid, and total chlorophyll contents were determined. Antimicrobial activities of safflower oil were tested against 10 skin pathogenic microorganisms: 4 bacterial strains (Escherichia coli, Enterobacter cloacae, Staphylococcus aureus, and Streptococcus agalactiae), 3 yeast species strains (Candida albicans, Candida parapsilosis, and Candida sake), and 3 fungi species (Aspergillus niger, Penicillium digitatum, and Fusarium oxysporum). A notable antioxidant capacity was demonstrated for the tested oil that exhibited moreover high antibacterial effects by both bacteriostatic and bactericidal pathways including lysozyme activity. An antifungal effect was further observed on the spore’s germination. Safflower oil could be considered as a good natural alternative remedy in the management of skin wounds and their possible microbial infections
Production and Characterization of New Biosurfactants/Bioemulsifiers from <i>Pantoea alhagi</i> and Their Antioxidant, Antimicrobial and Anti-Biofilm Potentiality Evaluations
The present work aimed to develop rapid approach monitoring using a simple selective method based on a positive hemolysis test, oil spreading activity and emulsification index determinations. It is the first to describe production of biosurfactants (BS) by the endophytic Pantoea alhagi species. Results indicated that the new BS evidenced an E24 emulsification index of 82%. Fourier-transform infrared (FTIR) results mentioned that the described BS belong to the glycolipid family. Fatty acid profiles showed the predominance of methyl 2-hyroxydodecanoate in the cell membrane (67.00%) and methyl 14-methylhexadecanoate (12.05%). The major fatty acid in the BS was oleic acid (76.26%), followed by methyl 12-methyltetradecanoate (10.93%). Markedly, the BS produced by the Pantoea alhagi species exhibited antimicrobial and anti-biofilm activities against tested human pathogens. With superior antibacterial activity against Escherchia coli and Staphylococcus aureus, a high antifungal effect was given against Fusarium sp. with a diameter of zone of inhibition of 29.5 mm, 36 mm and 31 mm, obtained by BS dissolved in methanol extract. The DPPH assay indicated that the BS (2 mg/mL) showed a higher antioxidant activity (78.07 inhibition percentage). The new BS exhibited specific characteristics, encouraging their use in various industrial applications
Biological control of grey mould in strawberry fruits by halophilic bacteria
Aims: Grey mould caused by Botrytis cinerea is an economically important disease of strawberries in Tunisia and worldwide. The aim of this study was to select effective halophilic bacteria from hypersaline ecosystems and evaluate the abilities of antifungal bacteria to secrete extracellular hydrolytic enzymes, anti- Botrytis metabolites and volatiles. Methods and Results: Grey mould was reduced in strawberry fruits treated with halophilic antagonists and artificially inoculated with B. cinerea. Thirty strains (20Æ2%) were active against the pathogen and reduced the percentage of fruits infected after 3 days of storage at 20 C, from 50% to 91Æ66%. The antagonists were characterized by phenotypic tests and 16S rDNA sequencing. They were identified as belonging to one of the species: Virgibacillus marismortui, B. subtilis, B. pumilus, B. licheniformis, Terribacillus halophilus, Halomonas elongata, Planococcus rifietoensis, Staphylococcus equorum and Staphylococcus sp. The effective isolates were tested for antifungal secondary metabolites. Conclusions: Moderately halophilic bacteria may be useful in biological control against this pathogen during postharvest storage of strawberries. Significance and Impact of the study: The use of such bacteria may constitute an important alternative to synthetic fungicides. These moderate halophiles can be exploited in commercial production and application of the effective strains under storage and greenhouse conditions
First Report of the Biosynthesis and Characterization of Silver Nanoparticles Using <i>Scabiosa atropurpurea</i> subsp. <i>maritima</i> Fruit Extracts and Their Antioxidant, Antimicrobial and Cytotoxic Properties
Candida and dermatophyte infections are difficult to treat due to increasing antifungal drugs resistance such as fluconazole, as well as the emergence of multi-resistance in clinical bacteria. Here, we first synthesized silver nanoparticles using aqueous fruit extracts from Scabiosa atropurpurea subsp. maritima (L.). The characterization of the AgNPs by means of UV, XRD, FTIR, and TEM showed that the AgNPs had a uniform spherical shape with average sizes of 40–50 nm. The biosynthesized AgNPs showed high antioxidant activity when investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The AgNPs displayed strong antibacterial potential expressed by the maximum zone inhibition and the lowest MIC and MBC values. The AgNPs revealed a significant antifungal effect against the growth and biofilm of Candida species. In fact, the AgNPs were efficient against Trichophyton rubrum, Trichophyton interdigitale, and Microsporum canis. The antifungal mechanisms of action of the AgNPs seem to be due to the disruption of membrane integrity and a reduction in virulence factors (biofilm and hyphae formation and a reduction in germination). Finally, the silver nanoparticles also showed important cytotoxic activity against the human multiple myeloma U266 cell line and the human breast cancer cell line MDA-MB-231. Therefore, we describe new silver nanoparticles with promising biomedical application in the development of novel antimicrobial and anticancer agents
First Report of in vitro Biological Agent to Biocontrol of Date Palm Stipe Rot Affected by Fusarium brachygibbosum by Using Pergularia tomentosa L., Aqueous Extract
Palm (Phoenix dactylifera L.) is a specie cultivated in Mauritania. The present study is focus on the potential of the aqueous extract of the Pergularia tomentosa L., as biological control agent against Fusarium brachygibbosum, the main agent of the date palm stipe rot disease in Mauritania. Fungal pathogen was isolated from symptomatic date palm stipe rot disease in Mauritania. The morphological characterization and the molecular identification by sequencing ITS1, ITS2 5.8 RNAr region showed homology of 98% with Fusarium brachygibbosum strain UOA/HCPF 16982 s during in vitro tests on leaves performed to verify its phytopathogenicity. the inhibitory effect of aqueous extract of Pergularia tomentosa L. on the phytopathogenic isolate (Fusarium brachygibbosum) of date palm, on mycelial growth and spore germination was observed. In fact, in vitro on PDA, mycelial growth ranged from 39.23 to 67.7 %, depending on the concentration of the aqueous extract of P. tomentosa.
The aqueous extract showed a reduction of spore germination varying from 5.3 to 23.8 %. The minimum inhibitory concentrations varied from 1 to 100 mg/ml. the various extracts give high antioxidant activities exhibited by DPPH assay. Multivariant analysis by PCA plot and the heatmap were done, to evaluate the correlation between the tested parameters.
These results suggest the use of Pergularia tomentosa L., extract as a biological agent to control and reduce damage caused by Fusarium brachygibbosum
High salt-tolerant protease from a potential biocontrol agent bacillus pumilus M3-16
In this paper, we investigate the characterization and evaluation of the antifungal protease activity from a halotolerant strain M3-16 of Bacillus pumilus, earlier isolated from a shallow salt lake in Tunisia. Protease enzyme was highly induced by the pathogen tested in vitro (27.4 U/ml). This is the first report on high salt-tolerant protease from B. pumilus, since it was active at high salinity (from 5 to 30% NaCl, w/v) as well as in the absence of salinity. This enzyme showed optimal activity at 60 °C and pH 8. At 80 °C and 30 min, the enzyme retained up to 91% and it showed stability over a wide pH range (from pH 5 to 11). The enzyme was found to be monomer with an estimated molecular mass of 31 kDa. The amino acid sequence showed high similarity (94%) to ATP-dependent protease from B. pumilus strain ATCC 7061. Thus, our alkaline thermostable and high salt-tolerant protease induced by a phytopathogenic fungus, could be useful for application in diverse areas such as biotechnology alimentary and agronomy industries