299 research outputs found

    Skill-Biased Technical Change in U.S. Manufacturing: A General Index Approach

    Full text link
    This article applies recent advances in productivity and efficiency measurement to the evaluation of skillbiased technical change. Using the general index approach we are able to establish an explicit and unconstrained time path for nonneutral technical change between production and nonproduction labor in U.S. manufacturing industries over the 1959-1996 period. Our findings confirm the prevailing interpretation in the labor economics literature that substantial reductions in the relative share of production labor are attributable to a sustained period of nonneutral technical change. However, we find that skill-biased technical change effects are most evident prior to 1983. This predates the diffusion of personal computer technologies in the workplace and the dramatic wage structure changes associated with the 1980?s. In contrast to prevailing alternatives, the general index approach also permits us to explain observed shifts in relative labor demand as a combination of price-induced substitution, nonhomothetic output effects and skill-biased technical change responses to a range of proposed elements

    Mobile applications in government services (mG-App) from user's perspectives: A predictive modelling approach

    Get PDF
    YesMobile applications are becoming a preferred delivery method for the government sector and contributing to more convenient and timely services to citizens. This study examines the intention to use mobile applications for the government services (mG-App) in Oman. This study extended the Unified Theory of Acceptance and Use of Technology (UTAUT) model by including two constructs namely trust and information quality. Data were collected from 513 mobile application users across Oman. The research model was analysed in two stages. First, structural equation modelling (SEM) was employed to determine significant determinants affecting users’ acceptance of mG-App. In the second stage, a neural network model was used to validate SEM results and determine the relative importance of determinants of acceptance of mG-App. The findings revealed that trust and performance expectancy are the strongest determinants influencing the acceptance of mG-App. The findings of this research have provided theoretical contributions to the existing research on mG-App and practical implications to decision-makers involved in the development and implementation of mG-App in in Oman

    Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma

    Get PDF
    Background Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. Methods We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. Results ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. Conclusion Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma

    Development of therapeutic splice-switching oligonucleotides.

    Get PDF
    Synthetic splice-switching oligonucleotides (SSOs) target nuclear pre-mRNA molecules to change exon splicing and generate an alternative protein isoform. Clinical trials with two competitive SSO drugs are underway to treat Duchenne Muscular Dystrophy (DMD). Beyond DMD, many additional therapeutic applications are possible, with some in phase I clinical trials or advanced preclinical evaluation. Here, we present an overview of the central factors involved in developing therapeutic SSOs for the treatment of diseases. The selection of susceptible pre-mRNA target sequences, as well as the design and chemical modification of SSOs to increase SSO stability and effectiveness, are key initial considerations. Identification of effective SSO target sequences is still largely empirical and published guidelines are not a universal guarantee for success. Specifically, exonic-targeted SSOs, which are successful in modifying dystrophin splicing, can be ineffective for splice-switching in other contexts. Chemical modifications, importantly, are associated with certain characteristic toxicities, which need to be addressed as target diseases require chronic treatment with SSOs. Moreover, SSO delivery in adequate quantities to the nucleus of target cells without toxicity can prove difficult. Lastly, the means by which these SSOs are administered needs to be acceptable to the patient. Engineering an efficient therapeutic SSO, therefore, necessarily entails a compromise between desirable qualities and effectiveness. Here, we describe how the application of optimal solutions may differ from case to case

    Role of human epicardial adipose tissue–derived miR-92a-3p in myocardial redox state

    Get PDF
    Background Visceral obesity is directly linked to increased cardiovascular risk, including heart failure. Objectives This study explored the ability of human epicardial adipose tissue (EAT)-derived microRNAs (miRNAs) to regulate the myocardial redox state and clinical outcomes. Methods This study screened for miRNAs expressed and released from human EAT and tested for correlations with the redox state in the adjacent myocardium in paired EAT/atrial biopsy specimens from patients undergoing cardiac surgery. Three miRNAs were then tested for causality in an in vitro model of cardiomyocytes. At a clinical level, causality/directionality were tested using genome-wide association screening, and the underlying mechanisms were explored using human biopsy specimens, as well as overexpression of the candidate miRNAs and their targets in vitro and in vivo using a transgenic mouse model. The final prognostic value of the discovered targets was tested in patients undergoing cardiac surgery, followed up for a median of 8 years. Results EAT miR-92a-3p was related to lower oxidative stress in human myocardium, a finding confirmed by using genetic regulators of miR-92a-3p in the human heart and EAT. miR-92a-3p reduced nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase–derived superoxide (O2.–) by targeting myocardial expression of WNT5A, which regulated Rac1-dependent activation of NADPH oxidases. Finally, high miR-92a-3p levels in EAT were independently related with lower risk of adverse cardiovascular events. Conclusions EAT-derived miRNAs exert paracrine effects on the human heart. Indeed miR-92a-3p suppresses the wingless-type MMTV integration site family, member 5a/Rac1/NADPH oxidase axis and improves the myocardial redox state. EAT-derived miR-92a-3p is related to improved clinical outcomes and is a rational therapeutic target for the prevention and treatment of obesity-related heart disease

    Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia

    Get PDF
    Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal (EMT) transcription factor, confers properties of ‘stemness’, such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system, as a well-established paradigm of stem cell biology, to evaluate Zeb1 mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knockout (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid onset thymic atrophy and apoptosis driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multi-lineage differentiation block was observed in Zeb1 KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multi-lineage differentiation genes, and of cell polarity, consisting of cytoskeleton, lipid metabolism/lipid membrane and cell adhesion related genes. Notably, Epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1 KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients and Zeb1 KO in the malignant counterparts of HSCs - leukemic stem cells (LSCs) - accelerated MLL-AF9 and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically co-ordinating HSC self-renewal, apoptotic and multi-lineage differentiation fates required to suppress leukemic potential in AML

    Gata2 haploinsufficiency promotes proliferation and functional decline of HSCs with myeloid bias during aging

    Get PDF
    During aging, hematopoietic stem cell (HSC) function wanes with important biological and clinical implications for benign and malignant hematology, and other co-morbidities, such as cardiovascular disease. However, the molecular mechanisms regulating HSC aging remain incompletely defined. GATA2 haploinsufficiency driven clinical syndromes initially result in primary immunodeficiencies and routinely evolve into hematologic malignancies on acquisition of further epigenetic mutations in both young and older patients. Using a conditional mouse model of Gata2 haploinsufficiency, we discover that during aging Gata2 promotes HSC proliferation, monocytosis, and loss of the common lymphoid progenitor. Aging of Gata2 haploinsufficient mice also offsets enhanced HSC apoptosis and decreased granulocyte-macrophage progenitor number normally observed in young Gata2 haploinsufficient mice. Transplantation of elderly Gata2 haploinsufficient HSCs impairs HSC function with evidence of myeloid bias. Our data demonstrate that Gata2 regulates HSC aging and suggest the mechanisms by which Gata2 mediated HSC aging has an impact on the evolution of malignancies in GATA2 haploinsufficiency syndromes

    Mapping atopic dermatitis and anti–IL-22 response signatures to type 2–low severe neutrophilic asthma

    Get PDF
    Background: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. Objective: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti–IL-22 (fezakinumab [FZ]) is enriched in severe asthma. Methods: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. Results: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. Conclusions: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases

    Seemingly Unrelated Regressions with Spatial Error Components

    Get PDF
    This paper considers various estimators using panel data seemingly unrelated regressions (SUR) with spatial error correlation. The true data generating process is assumed to be SUR with spatial error of the autoregressive or moving average type. Moreover, the remainder term of the spatial process is assumed to follow an error component structure. Both maximum likelihood and generalized moments (GM) methods of estimation are used. Using Monte Carlo experiments, we check the performance of these estimators and their forecasts under misspecification of the spatial error process, various spatial weight matrices, and heterogeneous versus homogeneous panel data models
    • …
    corecore