20 research outputs found

    Clinical characteristics and outcomes of clostridial bacteraemia in cancer patients

    Get PDF
    AbstractClostridial bacteraemia is usually associated with substantial morbidity and mortality in cancer patients. However, clinical characteristics and risk factors for early mortality in this population are poorly described. We retrospectively studied cancer patients with clostridial bacteraemia treated between January 1996 and December 2011. We compared clinical manifestations between patients with solid tumour and haematological malignancy and assessed risk factors for 7-day mortality. In all, 164 cancer patients developed clostridial bacteraemia during the study period—85 (52%) with solid tumour and 79 (48%) with haematological malignancy. Common isolates were Clostridium perfringens (27%), Clostridium septicum (19%) and Clostridium tertium (14%). Solid tumour malignancy patients were more likely to have a focal gastrointestinal source for bacteraemia and were more likely to undergo subsequent surgery. Haematological malignancy patients were more often neutropenic and more often had no focal source of bacteraemia. Seven-day mortality was 20% (33/164) and did not vary based on malignancy type. The adjusted odds ratio of dying within 7 days of clostridial bacteraemia among patients with hypotension (40/164) was 7.2 (95% CI, 2.9–18.1) and in patients with acute haemolysis (7/164) was 10.5 (95% CI, 1.3–85.2). Clostridial species also impacted mortality; no patient with C. tertium bacteraemia died within 7 days. In conclusion, clinical manifestations of clostridial bacteraemia differed between patients with solid tumour and haematological malignancy, but 7-day mortality was similar. Patients with hypotension and haemolysis at time of bacteraemia were at increased risk for early death

    Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Get PDF
    BACKGROUND: Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS: HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS: All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS: Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted

    Examining protective effects of SARS-CoV-2 neutralizing antibodies after vaccination or monoclonal antibody administration

    Get PDF
    While new vaccines for SARS-CoV-2 are authorized based on neutralizing antibody (nAb) titer against emerging variants of concern, an analogous pathway does not exist for preventative monoclonal antibodies. In this work, nAb titers were assessed as correlates of protection against COVID-19 in the casirivimab + imdevimab monoclonal antibody (mAb) prevention trial (ClinicalTrials.gov #NCT4452318) and in the mRNA-1273 vaccine trial (ClinicalTrials.gov #NCT04470427). In the mAb trial, protective efficacy of 92% (95% confidence interval (CI): 84%, 98%) is associated with a nAb titer of 1000 IU50/ml, with lower efficacy at lower nAb titers. In the vaccine trial, protective efficacies of 93% [95% CI: 91%, 95%] and 97% (95% CI: 95%, 98%) are associated with nAb titers of 100 and 1000 IU50/ml, respectively. These data quantitate a nAb titer correlate of protection for mAbs benchmarked alongside vaccine induced nAb titers and support nAb titer as a surrogate endpoint for authorizing new mAbs

    Rapid Development of an Integrated Network Infrastructure to Conduct Phase 3 COVID-19 Vaccine Trials

    Get PDF
    Importance: The COVID-19 pandemic has caused millions of infections and deaths and resulted in unprecedented international public health social and economic crises. As SARS-CoV-2 spread across the globe and its impact became evident, the development of safe and effective vaccines became a priority. Outlining the processes used to establish and support the conduct of the phase 3 randomized clinical trials that led to the rapid emergency use authorization and approval of several COVID-19 vaccines is of major significance for current and future pandemic response efforts. Observations: To support the rapid development of vaccines for the US population and the rest of the world, the National Institute of Allergy and Infectious Diseases established the COVID-19 Prevention Network (CoVPN) to assist in the coordination and implementation of phase 3 efficacy trials for COVID-19 vaccine candidates and monoclonal antibodies. By bringing together multiple networks, CoVPN was able to draw on existing clinical and laboratory infrastructure, community partnerships, and research expertise to quickly pivot clinical trial sites to conduct COVID-19 vaccine trials as soon as the investigational products were ready for phase 3 testing. The mission of CoVPN was to operationalize phase 3 vaccine trials using harmonized protocols, laboratory assays, and a single data and safety monitoring board to oversee the various studies. These trials, while staggered in time of initiation, overlapped in time and course of conduct and ultimately led to the successful completion of multiple studies and US Food and Drug Administration-licensed or -authorized vaccines, the first of which was available to the public less than 1 year from the discovery of the virus. Conclusions and Relevance: This Special Communication describes the design, geographic distribution, and underlying principles of conduct of these efficacy trials and summarizes data from 136 382 prospectively followed-up participants, including more than 2500 with documented COVID-19. These successful efforts can be replicated for other important research initiatives and point to the importance of investments in clinical trial infrastructure integral to pandemic preparedness

    Clinical and Demographic Factors Associated with COVID-19, Severe COVID-19, and SARS-CoV-2 Infection in Adults: A Secondary Cross-Protocol Analysis of 4 Randomized Clinical Trials

    Get PDF
    Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57692 participants (median [range] age, 51 [18-95] years; 11720 participants [20.3%] aged ≥65 years; 31058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17678 Hispanic or Latino participants (30.6%), and 40745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P <.001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P <.001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P <.001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P <.001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P =.002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P <.001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P =.005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P =.008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P <.001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P =.001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P =.001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P <.001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P <.001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics

    A Deferred-Vaccination Design to Assess Durability of COVID-19 Vaccine Effect After the Placebo Group Is Vaccinated

    Get PDF
    Multiple candidate vaccines to prevent COVID-19 have entered large-scale phase 3 placebo-controlled randomized clinical trials, and several have demonstrated substantial short-term efficacy. At some point after demonstration of substantial efficacy, placebo recipients should be offered the efficacious vaccine from their trial, which will occur before longer-term efficacy and safety are known. The absence of a placebo group could compromise assessment of longer-term vaccine effects. However, by continuing follow-up after vaccination of the placebo group, this study shows that placebo-controlled vaccine efficacy can be mathematically derived by assuming that the benefit of vaccination over time has the same profile for the original vaccine recipients and the original placebo recipients after their vaccination. Although this derivation provides less precise estimates than would be obtained by a standard trial where the placebo group remains unvaccinated, this proposed approach allows estimation of longer-term effect, including durability of vaccine efficacy and whether the vaccine eventually becomes harmful for some. Deferred vaccination, if done open-label, may lead to riskier behavior in the unblinded original vaccine group, confounding estimates of long-term vaccine efficacy. Hence, deferred vaccination via blinded crossover, where the vaccine group receives placebo and vice versa, would be the preferred way to assess vaccine durability and potential delayed harm. Deferred vaccination allows placebo recipients timely access to the vaccine when it would no longer be proper to maintain them on placebo, yet still allows important insights about immunologic and clinical effectiveness over time

    Long-term stability at 20°C of aspergillus galactomannan in serum and bronchoalveolar lavage specimens

    No full text
    Research to develop and validate novel methods for diagnosis of aspergillosis based on detection of galactomannan requires the use of clinical specimens that have been stored frozen. Data indicating that galactomannan remains stable when frozen are scant. The objective of this study was to determine the stability of galactomannan in clinical specimens stored at −20°C that were positive in the Platelia Aspergillus enzyme immunoassay when initially tested. Prospective real-time testing of serum and bronchoalveolar lavage (BAL) fluid pools from positive and negative patient specimens showed no decline in galactomannan index (GMI) over 11 months at −20°C and no development of positive reactions in the negative-control pool. Retrospective testing of positive specimens that had been stored at −20°C for 5 years showed that 28 of 30 serum (n = 15) or BAL (n = 15) specimens remained positive. These findings support the use of frozen serum or BAL specimens stored for at least 5 years in evaluation of diagnostic tests based on detection of galactomannan
    corecore