2 research outputs found

    Modulation of steroidogenesis by Actaea racemosa and vitamin C combination, in letrozole induced polycystic ovarian syndrome rat model : promising activity without the risk of hepatic adverse effect

    Get PDF
    Background: Complementary remedies such as the Chinese herb 'Sheng Ma' (Black cohosh; Actaea racemosa 'AR') are being sought to overcome the shortcomings of conventional hormonal and surgical therapies developed for the treatment of polycystic ovary syndrome (PCOS). However, AR-induced hepatotoxicity necessitates a cautionary warning to be labeled on its products as recommended by the United States Pharmacopeia, where four out of seven hepatotoxic cases in Sweden were possibly associated with black cohosh products. Methods: We investigated the effects, safety, and molecular targets of black cohosh ethanolic extract and/or vitamin C on ovarian functionality and oxidative response in hyperandrogenism-induced PCOS rats. A well-established rat model using oral letrozole, daily, for 21 days was employed. The rats then received the AR extract with and without vitamin C for 28 days. The hormonal evaluation, antioxidant status, histopathological examination, immunohistochemical analysis, cell proliferation, and the expression ratio of the aromatase (Cyp19α1) gene were evaluated. Additionally, holistic profiling of the AR arsenal of secondary metabolites was performed using ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole high-resolution time of flight mass spectrometry (QTOF-MS). Results: Beneficial effects were exerted by AR in PCOS rats as antioxidant status, hormonal profile, lipid profile, glucose level, liver functions, and the induced Ki-67 expression in the granulosa, theca cell layers and interstitial stromal cells were all improved. Notably, the combination of AR with vitamin C was not only more effective in reversing the dysregulated levels of testosterone, luteinizing hormone, and mRNA level of Cyp19α1 gene in the PCOS rat, but also safer. The combination regulated both ovarian and hepatic malondialdehyde (MDA) and glutathione (GSH) levels with histological improvement observed in the liver and ovaries. In addition, the untargeted metabolomic profiling enabled the identification of 61 metabolites allocated in five major chemical classes. Conclusion: This study demonstrated the benefit of the combinatorial effects of AR and vitamin C in mitigating the reproductive and metabolic disorders associated with PCOS with the elimination of AR hepatotoxic risk

    Metabolomic profiling and neuroprotective effects of purslane seeds extract against acrylamide toxicity in rat's brain

    No full text
    Aim: Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain‐derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity. Graphical Abstract: [Figure not available: see fulltext.
    corecore