6 research outputs found

    Performance analysis on dynamic wireless charging for electric vehicle using ferrite core

    Get PDF
    The technology of dynamic Wireless Power Transfer (WPT) has been accepted in the Electric Vehicle (EV) industry. Recently, for a stationary EV charging system, the existence of a ferrite core improves power efficiency. However, for dynamic wireless charging, the output power fluctuates when the EV moves. Two main obstacles that must be dealt with is air-gaps and misalignment between the coils. This paper investigates clear design guidelines for fabrication of an efficient Resonant Inductive Power Transfer (RIPT) system for the EV battery charging application using a ferrite core. Two different geometry shapes of ferrite core, U and I cores, will be investigated and tested using simulation and experimental work. The proposed design was simulated in JMAG 14.0, and the prototype was tested in the laboratory. The expected output analysis from these two techniques was that the power efficiency of the ferrite pair should first be calculated. From the analysis and experimental results, it is seen that the pair of ferrite cores that used a U shape at the primary and secondary side provides the most efficient coupling in larger air-gap RIPT application with 94.69% on simulation JMAG 14.0 and 89.7% from conducting an experiment

    500W circular coil parameters mathematical design for wireless power transfer with ferrite core

    No full text
    The efficiency of wireless pad designs with ferrite cores has been established in several investigations. However, they seldom offered a viable solution to the problem of modifying the ferrite form's geometric shape. The use of a ferrite core in the primary and secondary coils has been suggested by several researchers. The ferrite core design, on the other hand, is still in the works. Using the wrong ferrite core design might result in unnecessary extra weight and higher production costs. The circular coil design in the primary and secondary for wireless power transfer (WPT) in electric vehicles is studied in this research. The suggested coil design is used to develop mathematical design utilizing numerical solutions. Later, using Multisims software, this coil design is produced in simulation. The suggested coil design's power efficiency is examined and contrasted between computed and simulated results. Finally, based on the results of the power efficiency, a definitive discussion is presented

    500W Circular Coil Parameters Mathematical Design for Wireless Power Transfer with Ferrite Core

    No full text
    The efficiency of wireless pad designs with ferrite cores has been established in several investigations. However, they seldom offered a viable solution to the problem of modifying the ferrite form's geometric shape. The use of a ferrite core in the primary and secondary coils has been suggested by several researchers. The ferrite core design, on the other hand, is still in the works. Using the wrong ferrite core design might result in unnecessary extra weight and higher production costs. The circular coil design in the primary and secondary for wireless power transfer (WPT) in electric vehicles is studied in this research. The suggested coil design is used to develop mathematical design utilizing numerical solutions. Later, using Multisims software, this coil design is produced in simulation. The suggested coil design's power efficiency is examined and contrasted between computed and simulated results. Finally, based on the results of the power efficiency, a definitive discussion is presented

    Mathematical Design of Coil Parameter for Wireless Power Transfer using NI Multisims Software

    Get PDF
    This paper presents a new design of circular coil for both primary and secondary sides in wireless power transfer (WPT). This paper starts with the numerical solution of 500W power for ideal case WPT to calculate the values of coil parameters for both primary and secondary sides. The optimum value of coupling coefficient (k) was verified by k < kc where kc is the critical coupling coefficient. After that, this paper designs the schematic circuit of this project by using all component values from the previous step. The circuit is then simulated by using NI Multisims software to obtain the measured values of the coil parameters. Next, this paper discusses the power efficiency between calculated and measured values. Finally, the summary of the suitable dimensions for inner and outer diameters and the number of turns needed for both primary and secondary coils are calculated by using the values of inductance

    Design of U and I Ferrite Core On Dynamic Wirelesss Charging for Electric Vehicle

    Get PDF
    This study provides an approach investigation of U and I ferrite core geometrics to improve the power efficiency for Electric Vehicle (EV) inductive wireless charging in dynamic mode. Dynamic wireless charging (DWC) enables recharging of battery pad during the vehicle is on the road. Hence, the design of battery pad must deal with two main factor that led to power leakage such air gap and misalignment. Using ferrite magnetic core, it improves the power transferred by reduce the leakage magnetic radiation between primary and secondary side. Different conditions are investigated on U and I core. The first and second condition is U or I core only at primary side and secondary U or I core only at the secondary side. The last condition is both at primary and secondary side of U or I ferrite core. The purpose of this project is to design a prototype of EV thru several method, design proposed, circuit simulation, pair simulation and prototype development. NI Multisim are used to simulate circuit of WPT for operation validity

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore