322 research outputs found

    Low energy dynamics of spinor condensates

    Full text link
    We present a derivation of the low energy Lagrangian governing the dynamics of the spin degrees of freedom in a spinor Bose condensate, for any phase in which the average magnetization vanishes. This includes all phases found within mean-field treatments except for the ferromagnet, for which the low energy dynamics has been discussed previously. The Lagrangian takes the form of a sigma model for the rotation matrix describing the local orientation of the spin state of the gas

    Continuous Spin Representations of the Poincar\'e and Super-Poincar\'e Groups

    Full text link
    We construct Wigner's continuous spin representations of the Poincar\'e algebra for massless particles in higher dimensions. The states are labeled both by the length of a space-like translation vector and the Dynkin indices of the {\it short little group} SO(d−3)SO(d-3), where dd is the space-time dimension. Continuous spin representations are in one-to-one correspondence with representations of the short little group. We also demonstrate how combinations of the bosonic and fermionic representations form supermultiplets of the super-Poincar\'e algebra. If the light-cone translations are nilpotent, these representations become finite dimensional, but contain zero or negative norm states, and their supersymmetry algebra contains a central charge in four dimensions.Comment: 19 page

    Noncommutative space-time models

    Full text link
    The FRT quantum Euclidean spaces OqNO_q^N are formulated in terms of Cartesian generators. The quantum analogs of N-dimensional Cayley-Klein spaces are obtained by contractions and analytical continuations. Noncommutative constant curvature spaces are introduced as a spheres in the quantum Cayley-Klein spaces. For N=5 part of them are interpreted as the noncommutative analogs of (1+3) space-time models. As a result the quantum (anti) de Sitter, Newton, Galilei kinematics with the fundamental length and the fundamental time are suggested.Comment: 8 pages; talk given at XIV International Colloquium of Integrable Systems, Prague, June 16-18, 200

    Newton-Hooke spacetimes, Hpp-waves and the cosmological constant

    Full text link
    We show explicitly how the Newton-Hooke groups act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes and show how these may be obtained from a null reduction of 5-dimensional homogeneous pp-wave Lorentzian spacetimes. This allows us to realize the Newton-Hooke groups and their Bargmann type central extensions as subgroups of the isometry groups of the pp-wave spacetimes. The extended Schrodinger type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model.Comment: 21 page

    General Solutions of Relativistic Wave Equations II: Arbitrary Spin Chains

    Full text link
    A construction of relativistic wave equations on the homogeneous spaces of the Poincar\'{e} group is given for arbitrary spin chains. Parametrizations of the field functions and harmonic analysis on the homogeneous spaces are studied. It is shown that a direct product of Minkowski spacetime and two-dimensional complex sphere is the most suitable homogeneous space for the physical applications. The Lagrangian formalism and field equations on the Poincar\'{e} and Lorentz groups are considered. A boundary value problem for the relativistically invariant system is defined. General solutions of this problem are expressed via an expansion in hyperspherical functions defined on the complex two-sphere.Comment: 56 pages, LaTeX2

    Non-standard quantum so(3,2) and its contractions

    Full text link
    A full (triangular) quantum deformation of so(3,2) is presented by considering this algebra as the conformal algebra of the 2+1 dimensional Minkowskian spacetime. Non-relativistic contractions are analysed and used to obtain quantum Hopf structures for the conformal algebras of the 2+1 Galilean and Carroll spacetimes. Relations between the latter and the null-plane quantum Poincar\'e algebra are studied.Comment: 9 pages, LaTe

    Geometries for Possible Kinematics

    Full text link
    The algebras for all possible Lorentzian and Euclidean kinematics with so(3)\frak{so}(3) isotropy except static ones are re-classified. The geometries for algebras are presented by contraction approach. The relations among the geometries are revealed. Almost all geometries fall into pairs. There exists t↔1/(Îœ2t)t \leftrightarrow 1/(\nu^2t) correspondence in each pair. In the viewpoint of differential geometry, there are only 9 geometries, which have right signature and geometrical spatial isotropy. They are 3 relativistic geometries, 3 absolute-time geometries, and 3 absolute-space geometries.Comment: 40 pages, 7 figure

    Representation Theory of Quantized Poincare Algebra. Tensor Operators and Their Application to One-Partical Systems

    Get PDF
    A representation theory of the quantized Poincar\'e (Îș\kappa-Poincar\'e) algebra (QPA) is developed. We show that the representations of this algebra are closely connected with the representations of the non-deformed Poincar\'e algebra. A theory of tensor operators for QPA is considered in detail. Necessary and sufficient conditions are found in order for scalars to be invariants. Covariant components of the four-momenta and the Pauli-Lubanski vector are explicitly constructed.These results are used for the construction of some q-relativistic equations. The Wigner-Eckart theorem for QPA is proven.Comment: 18 page

    Multi-Resolution Analysis and Fractional Quantum Hall Effect: an Equivalence Result

    Get PDF
    In this paper we prove that any multi-resolution analysis of \Lc^2(\R) produces, for some values of the filling factor, a single-electron wave function of the lowest Landau level (LLL) which, together with its (magnetic) translated, gives rise to an orthonormal set in the LLL. We also give the inverse construction. Moreover, we extend this procedure to the higher Landau levels and we discuss the analogies and the differences between this procedure and the one previously proposed by J.-P. Antoine and the author.Comment: Submitted to Journal Mathematical Physisc

    Gravitational Equilibrium in the Presence of a Positive Cosmological Constant

    Get PDF
    We reconsider the virial theorem in the presence of a positive cosmological constant Lambda. Assuming steady state, we derive an inequality of the form rho >= A (Lambda / 4 pi GN) for the mean density rho of the astrophysical object. With a minimum at Asphere = 2, its value can increase by several orders of magnitude as the shape of the object deviates from a spherically symmetric one. This, among others, indicates that flattened matter distributions like e.g. clusters or superclusters, with low density, cannot be in gravitational equilibrium.Comment: 7 pages, no figure
    • 

    corecore