33 research outputs found

    High lipid order of Arabidopsis cell‐plate membranes mediated by sterol and DYNAMIN‐RELATED PROTEIN1A function

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109568/1/tpj12674.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109568/2/tpj12674-sup-0002-FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109568/3/tpj12674-sup-0001-FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109568/4/tpj12674-sup-0003-FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109568/5/tpj12674-sup-0004-FigS4.pd

    Atg11

    No full text

    Dynamics of Arabidopsis Dynamin-Related Protein 1C and a Clathrin Light Chain at the Plasma Membrane[W][OA]

    No full text
    Plant morphogenesis depends on polarized exocytic and endocytic membrane trafficking. Members of the Arabidopsis thaliana dynamin-related protein 1 (DRP1) subfamily are required for polarized cell expansion and cytokinesis. Using a combination of live-cell imaging techniques, we show that a functional DRP1C green fluorescent fusion protein (DRP1C-GFP) was localized at the division plane in dividing cells and to the plasma membrane in expanding interphase cells. In both tip growing root hairs and diffuse-polar expanding epidermal cells, DRP1C-GFP organized into dynamic foci at the cell cortex, which colocalized with a clathrin light chain fluorescent fusion protein (CLC-FFP), suggesting that DRP1C may participate in clathrin-mediated membrane dynamics. DRP1C-GFP and CLC-GFP foci dynamics are dependent on cytoskeleton organization, cytoplasmic streaming, and functional clathrin-mediated endocytic traffic. Our studies provide insight into DRP1 and clathrin dynamics in the plant cell cortex and indicate that the clathrin endocytic machinery in plants has both similarities and striking differences to that in mammalian cells and yeast

    The Arabidopsis Dynamin-Related Protein2 Family Is Essential for Gametophyte Development[C][W]

    No full text
    Both the DRP2 family of classical dynamins and the plant-specific DRP1s are thought to be required for clathrin-mediated trafficking. This study shows that the Arabidopsis DRP2 and DRP1 families have distinct developmental roles. DRP2 function was found to be necessary for cell cycle progression in the early stages of both the male and the female gametophyte development

    Atg41/Icy2 regulates autophagosome formation

    No full text
    <p>Macroautophagy (hereafter autophagy) is one of the major degradation systems in eukaryotic cells, and its dysfunction may result in diseases ranging from neurodegeneration to cancer. Although most of the autophagy-related (Atg) proteins that function in this pathway were first identified in yeast, many were subsequently shown to have homologs in higher eukaryotes including humans, and the overall mechanism of autophagy is highly conserved. The most prominent feature of autophagy is the formation of a double-membrane sequestering compartment, the phagophore; this transient organelle surrounds part of the cytoplasm and matures into an autophagosome, which subsequently fuses with the vacuole or lysosome to allow degradation of the cargo. Much attention has focused on the process involved in phagophore nucleation and expansion, but many questions remain. Here, we identified the yeast protein Icy2, which we now name Atg41, as playing a role in autophagosome formation. Atg41 interacts with the transmembrane protein Atg9, a key component involved in autophagosome biogenesis, and both proteins display a similar localization profile. Under autophagy-inducing conditions the expression level of Atg41 increases dramatically and is regulated by the transcription factor Gcn4. This work provides further insight into the mechanism of Atg9 function and the dynamics of sequestering membrane formation during autophagy.</p
    corecore