17 research outputs found

    Bilateral Dorsal Cochlear Nucleus Lesions Prevent Acoustic-Trauma Induced Tinnitus in an Animal Model

    Get PDF
    Animal experiments suggest that chronic tinnitus (“ringing in the ears”) may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal

    Short Term Depression Unmasks the Ghost Frequency

    Get PDF
    Short Term Plasticity (STP) has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression (STD) can affect the phase of frequency coded input such that small networks can perform temporal signal summation and determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency, the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits

    Vigabatrin, a GABA Transaminase Inhibitor, Reversibly Eliminates Tinnitus in an Animal Model

    No full text
    Animal models have facilitated basic neuroscience research investigating the pathophysiology of tinnitus. It has been hypothesized that partial deafferentation produces a loss of tonic inhibition in the auditory system that may lead to inappropriate neuroplastic changes eventually expressed as tinnitus. The pathological down-regulation of γ-amino butyric acid (GABA) provides a potential mechanism for this loss of inhibition. Using an animal model previously demonstrated to be sensitive to treatments that either induce or attenuate tinnitus, the present study examined the effect of the specific GABA agonist vigabatrin on chronic tinnitus. It was hypothesized that vigabatrin would decrease the evidence of tinnitus by restoring central inhibitory function through increased GABA availability. Vigabatrin has been demonstrated to elevate central GABA levels (Mattson et al. 1995). Tinnitus was induced in rats using a single 1-h unilateral exposure to band-limited noise, which preserved normal hearing in one ear. Psychophysical evidence of tinnitus was obtained using a free-operant conditioned-suppression method: Rats lever-pressed for food pellets and were trained to discriminate between the presence and absence of sound by punishing lever pressing with a mild foot shock (0.5 mA; 1 s) at the conclusion of randomly introduced silent periods (60 s) inserted into background low-level noise. Additional random insertion of pure tone and noise periods of variable intensity enabled the derivation of psychophysical functions that reflected the presence of tinnitus with features similar to 20-kHz tones. Vigabatrin was chronically administered via drinking water at 30 and 81 mg kg−1 day−1, with each dose level tested over 2 weeks, followed by a 0-mg washout test. Vigabatrin completely and reversibly eliminated the psychophysical evidence of tinnitus at both doses. Although vigabatrin has serious negative side effects that have prevented its clinical use in the USA, it is nevertheless a potentially useful tool in unraveling tinnitus pathophysiology
    corecore