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Abstract

Short Term Plasticity (STP) has been shown to exist extensively in synapses throughout the brain. Its function is more or less
clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what
effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression
(STD) can affect the phase of frequency coded input such that small networks can perform temporal signal summation and
determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency,
the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this
property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear
Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these
microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP
in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits.
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Introduction

The phenomenon of the missing fundamental frequency, often

referred to as the Ghost Frequency, is the perceived pitch of a

harmonic complex when the complex does not contain the pitch

frequency itself. The base frequency, which is the pitch that is

perceived, is absent from the harmonic complex. The mechanism

underlying the perception of the ghost frequency has been the

subject of much auditory research and, more recently, model

studies. The problem can also be described as determining the

lowest frequency that is the multiple of the combined frequencies.

A similar phenomenon has been observed in afferent motor input

as a ghost motor response [1]. Although it has not yet been shown

how sensory systems perceive ghost frequencies, it has been

conjectured that noise in sub-threshold activity is a mechanism to

improve network performance and robustness [2]. Models that

incorporate this type of system noise have shown that, for specific

instances, a small network can identify the base frequency of the

input [3]. However, the inherent stochasticity does not provide a

reliable or highly accurate result across different frequency ranges.

The requirement of accurate frequency determination has been

argued to be important for pitch perception and subsequent

auditory processing [4,5]. Therefore, the method employed by the

auditory system needs to be both accurate and generic in the sense

that it does not rely on unique conditions, such as specific network

structures or special dynamics. Even though the mechanism for

pitch processing has not conclusively been identified, work in the

auditory system has demonstrated several properties that indicate

contributing components for accurate and efficient frequency

coded processing. In primary auditory cortex, it was found that

rapid synaptic depression explains non-linear modulation of the

spectro-temporal tuning to stimuli [6]. Similarly, variations in

conductances allow the processing of acoustic information with

high precision in bushy cells cochlear nucleus [7]. Short term

suppression and forward-masking in cochlear nucleus [8] and the

consistent role of Short Term Facilitation (STF) and Short Term

Depression (STD) in the auditory brain stem [9] points to an

important function of Short Term Plasticity in highly accurate

processing of frequency based sensory input. STP has been widely

identified in other areas of the brain as well. Recent work indicates

its existence in cortical microcircuits [10], the Calyx of Held [11],

thalamo-cortical connections in V1 [12] and numerous other sites.

From these experimental results, it can be concluded that STP

plays an important role in timing dependent processing through-

out the brain in many different areas with different functionality.

Synaptic resource models [13,14] have shown that sensitivity to

input frequency and synaptic tuning to synchrony patterns are

STP related. We extend this work using a dynamic synaptic

activity model to show that Short Term Depression can effectively

provide synchrony and frequency summation with high accuracy.

With a simple conceptual network, it is shown that the problem of

the Ghost Frequency, determining the base frequency of a set of

input frequencies, can be resolved using STD. Furthermore, we

show, using experimentally derived microcircuits, the likely

function of STP within those circuits in self-regulation of cortical

activity and long-range afferent input [10].

Results

Simple STD Model
A Short Term Depression (STD) synapse model is used to study

the pitch perception problem [15] by constructing a mutual

inhibitory network with STD (see Methods for the description).

The frequency encoded input is projected onto two neurons with
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STD on the mutually inhibiting connections. By comparing the

inter-spike interval for both neurons, the emerging periodicity

results in the fundamental frequency of the two input frequencies.

As a typical example, two mutually inhibitory neurons are driven

with input frequencies of 10 Hz (100 ms) and 6.67 Hz (150 ms)

(figure 1A). These periods are chosen to eliminate any transient

effect in the network due to residual activity of the neurons. The

auditory system is known to contain very fast neurons, and

harmonic sounds seem to be encoded as neural population activity

patterns [6,16–19]. Neurons that respond to specific auditory

input can repsond with varying discharge rates between approx-

imately 20 to 90 spikes per second [6,17] with a median at about

70 spikes per second (&14ms.).

The emerging fundamental frequency of 3.33 Hz (300 ms)

(figure 1B) can be easily read out from the virtual neuron that

receives input from all other neurons. Alternatively, providing

input to the same two mutually inhibitory neurons with

frequencies of 27.78 Hz (36 ms) and 7.4 Hz (135 ms) (figure 1C)

results in an emerging 1.85 Hz (540 ms) frequency (figure 1D).

Due to the presence of the STD adaptation, the two activities of

the inhibitory neurons synchronise such that each neuron can only

become active if it has received inhibitory input from the other

neuron, just before receiving input from the input neuron.

Without STD, the neurons would simply act as passive coincide

detectors and the fundamental frequency would not reliably

emerge. The network selects the activity pattern from the

combined input activities, which means that any combination of

input frequencies will result in an emerging activity which is the

Least Common Multiple (LCM) of the input periods. This LCM

period forms then the fundamental frequency of those input

frequencies. The problem of the ghost frequency can therefore be

resolved by simple STD connections of neurons which allows the

fundamental frequency of the input to emerge in the network

dynamics even when this fundamental frequency is not present in

the input. Different frequencies have been used and will

consistently result in the emerging LCM for any combination of

input frequencies. No combination of input frequencies has been

found that failed to result in network dynamics with the LCM,

even for very long periods.

The simple STP model can be extended with multiple mutually

inhibitory neurons which will allow the network to determine the

LCM of multiple input frequencies. For example, presenting three

frequencies to a network of three mutually inhibitory neurons with

STD, such as 13.33 Hz (75 ms), 1.29 Hz (36 ms) and 11.11 Hz

(90 ms), will result in an emerging period of 1.11 Hz (900 ms)

(figure 2). Combinations of three frequencies, as well as four or

more, will also result in the emerging LCM period of the input

frequencies.

Figure 1. Determining the ghost frequency of two input frequencies. A Activity of neurons X1 (blue) and X2 (green) driven by two input
frequencies 10 Hz (100 ms) and 6.67 Hz (150 ms). B Activity of the read-out neuron V clearly showing the emerging fundamental frequency of
3.33 Hz (300 ms). C Neurons X1 (blue) and X2 (green) driven by two different input frequencies of 27.78 Hz (36 ms) and 7.4 Hz (135 ms). D Activity of
neuron V showing the emergent fundamental frequency of 1.85 Hz (540 ms).
doi:10.1371/journal.pone.0050189.g001
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The simple STD model is capable of phase shifting the neural

input patterns such that the emergent dynamics becomes the LCM

of the input periods. Furthermore, it has three important

properties for network dynamics. Firstly, it is model independent

in the sense that the model used to simulate the membrane

potential does not impact on the functional properties of the STP

model. The membrane potential model can be freely exchanged to

a different model if desired, provided the input to the STP model is

appropriately scaled for the different membrane potential models.

The Morris-Lecar model [20] has been used for the simulations

described above, and the Hindmarsh-Rose model [21,22] was

used to verify the independence of the STP model. They were

found to be equally effective in the emerging LCM network

dynamics. We also used the Hodgkin-Huxley model [23] to show

the emerging network dynamics for higher frequencies. Input

frequencies of 83.33 Hz (12 ms period) and 71.43 Hz (14 ms

period) will result in an 11.9 Hz (84 ms) network activity (figure 3

A). Even an analytical approximation of the Hodgkin-Huxley

model in the form of the Fitzhugh-Nagumo [24] can be used,

although the relative stiffness of the two dimensional Fitzhugh-

Nagumo model may result in non-physiological spikes (figure 3 B).

Nevertheless, the STD model still shows the emerging LCM

(27.78 Hz and 7.4 Hz resulting in 1.85 Hz, 540 ms period).

Lastly, to show that the emerging dynamics is the result of the

network architecture in combination with the STD model, the

Hodgkin-Huxley simulation described earlier was simulated again

but without the synaptic adaptation mechanism (figure 3 C). Here

simple synaptic transmission was used based on equations (1) and

(2) (see Materials and Methods). In this situation the neurons act as

simple coincidence detectors in the network and the LCM does

not emerge reliably. The LCM would only emerge if the inputs

happen to be multiples of each other and the input activities

coincide.

The second property is the phase and delay independence of the

simple STD model. Because the model does not require specific

firing times but combines the input once they occur, given the

change in activity pattern, the relative phase of the input does not

affect the resulting LCM period of the dynamics. This is illustrated

in figure 4 where is shown the LCM of two mutually inhibitory

neurons with periodic input of 27.78 Hz (36 ms) and 7.4 Hz

(135 ms) (c.f. figure 1D). Here, for one simulation, the second

periodic input is 65 ms out of phase with the first periodic input.

Notice that the entire period is phase-shifted by 65 ms in

comparison with the zero phase-shift input simulation but the

dynamics is the same. This implies that the model is both phase

and delay independent as additional delay in any of the inputs will

simply result in a phase-shift in the output but not affect the

dynamics in any other way. It is important to recognise that this

property is supported by the theory describing Fourier series. It

can therefore be conclude that the network performs a correct

summation of the input frequencies, resulting in the emerging base

frequency. A phase-plot of the Hodgkin-Huxley mutual inhibitory

network shows that the phase-shift of the stable oscillating network

is consistent and robust (figure 3 D). However, the values of the

time difference and voltage difference are merely due to the

response timings of the conductance model (how quickly the

dynamics of the HH model responds to the adaption), it does not

say much about the deterministic STP model. Both the exact

phase timing and the change in current induced by the STP

mechanism are therefore only relevant for the mutual inhibitory

network with the chosen neuron models.

The third property concerns the ability of the simple STD

model to determine the LCM of the input periods with high

accuracy. Different membrane potential models affects the

accuracy of the spike timing, some models are more reliable than

others due to their intrinsic properties and numerical constraints.

Additionally, the method of numerical integration may cause

additional errors to emerge. Any computational method that relies

on some coincidental occurrence of events will therefore be

severely limited if these systematic errors affect the resulting

dynamics. The simple STD model compensates for any short term

(milliseconds) time differences and is therefore highly accurate. To

demonstrate this accuracy, we compared the relative error of the

emerging LCM period at the first and last period of the entire

simulation of at least 5 LCM periods (Table 1). Due to transients

in the dynamics, the first emerging period has a very small relative

error, which decreases subsequently and is eliminated at the last

(fifth) period. The simulations with Morris-Lecar neurons and

STD were integrated with standard Runge-Kutta Order 4

(truncation error O(h4)) and Runge-Kutta-Fehlberg (truncation

error O(h5)).

Note that this accuracy of the activity pattern is visible as

accurate replication of repeated inter-spike interval. The actual

spiking event timings are dependent on the properties of the

membrane potential model and may vary between models and

simulation conditions. In auditory nerve representations, it has

been found that both rate representation and inter-spike interval

representations were accurate for most frequency ranges in

response to two concurrent harmonic complex tones with missing

fundamentals [25]. This illustrates the high reliability of pitch

representations, relatively independent of the coding mechanism

which STP can provide.

Frequency Response Model
As has been shown by the simple STD model, short term

plasticity allows the summation of frequencies with high accuracy.

An important function of several networks is the extraction of

features and frequencies embedded in compound signals. We will

describe a plausible biological network, derived from experimental

results in the ventral cochlear nucleus with short term plasticity,

and determine how STD affects the dynamics of the network.

Figure 2. Activity of the read-out neuron V for three input
frequencies. Three mutually inhibitory neurons with STD were
driven by three frequencies of 13.33 Hz (75 ms), 1.29 Hz (36 ms) and
11.11 Hz (90 ms). The emergent fundamental frequency is 1.11 Hz
(900 ms).
doi:10.1371/journal.pone.0050189.g002
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In figure 5 A is shown the scheme of the biological microcircuit

in the ventral cochlear nucleus [26]. Two T-stellate cells (chopper

neurons) C1 and C2 mutually excite each other but are inhibited by

D-stellate cells (onset chopper neurons) O1 and O2 [26–28]. Both onset

chopper neurons O1 and O2 have an internal characteristic

frequency which appears as below threshold activity. All neurons

receive input from a conceptual receptor cell R whose activation is

determined by the input of an amplitude modulated sine wave in

the form of a Quasi Frequency Modulated wave (QFM) (see

Methods). The excitatory synaptic connections between the

chopper neurons and the inhibitory synaptic connections to the

chopper neurons are dynamic synapses with Short Term

Depression. All neurons receive input from the receptor neuron

R which is based on the QFM signal, in this example fc~1:66Hz

(600 ms period) and fm~10Hz (100 ms period). The receptor

neuron responds to the modulated input as a burst pattern

correlated with the amplitude modulation of the QFM wave

(figure 5 B). The onset chopper neurons O1 and O2 have a

characteristic activity of 11.11 Hz (90 ms) and 40 Hz (25 ms). The

chopper neurons C1 and C2 respond to the input from the

receptor neuron, one onset neuron and the activity of the other

chopper neuron. They show an unique pattern due to the

characteristic frequency sensitive inhibitory input from O1 and O2,

respectively (figure 5 C and D).

The emerging dynamic activity of the two chopper neurons

shows that these neurons select the sub-harmonic activity pattern

from the combined activity. They compare the positive input from

the other neuron with the frequency sensitive inhibitory input and

the receptor input. Such a temporal representation with phase shift

has been described in the Ventral Cochlear Nucleus by

determining the characteristic behaviour of neurons associated

with harmonic sounds [29]. This selection mechanism could

Figure 3. The adaptation of the neural activity by the STD model is independent from the membrane conductance model. A Activity
of two neurons X2 and X3 showing the LCM at the fundamental frequency of 11.9 Hz (84 ms) for a network constructed using the Hodgkin-Huxley
conductance model. B Activity of neurons X2 and X3 showing the fundamental frequency of 1.85 Hz, using the Fitzhugh-Nagumo model. C The
network of HH neurons and synaptic transmission as in panel lbfa, but without adaptation. The neurons function as simple coincidence detectors and
do not converge to the LCM. Due to the difference in periodicity of the two neurons they will eventually go completely out of phase. D Phase
diagram of the relative change in membrane voltage for the HH network versus the relative change in timing induced by deterministic LTD
adaptation. Shown are the stable phase differences for neurons X2 (blue) and X3 (green) for at least 20 periods. The phase difference was calculated
by determining the timing differences of spiking events for individual periods between synapses connecting X2 and X3 of the adapted network and
the non-adapted network. The corresponding difference in amplitude of the membrane activity for each event provides the relative change.
doi:10.1371/journal.pone.0050189.g003
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function as a selective filter to recode the afferent input into known

associated activity patterns. This has important implications for

pattern recognition and auditory memory by allowing selected

input to be associated with network dynamics.

Cortical Disynaptic Pathways
Short Term Plasticity is not uniquely a property of the auditory

system. In connections between neocortical pyramidal cells STP

has been found, as well as in facilitating synapses from mediating

inhibitory interneurons. These Martinotti cells can modulate the

activity pattern of the pyramidal cells with disynaptic inhibition to

regulate cortical activity [10]. The effectiveness of the STP

mechanism on this regulation process can be understood by

simulating the microcircuit with the appropriate STP properties

and showing that the theoretical results converge with the

experimental data.

The cortical disynaptic model is based on the micro-cicuit

formed by two pyramidal neurons and one inhibitory Martinotti

neuron. By changing the connectivity between these three cells,

enabling and disabling specific connections, we show how the

dynamics of the network is changed due to the STP between

connections. Neurons are modelled using Morris-Lecar [20] with

STP synaptic connections as described below. Parameter values

are used in the same range as for the STD model (see Methods
for details). In figure 6 is firstly shown a summary of the simulation

results which illuminates the function of STP in these types of

cortical microcircuits. In panel A (top) is shown a minimal network

of one pyramidal neuron P1 and one Martinotti M neuron. The

pyramidal synapse and the inhibitory Martinotti synapse are short

term facilitating which is shown experimentally as evoked APs

with higher probability and shorter onset latency. P1 is then

stimulated with three trains of neuronal spikes at different

frequencies. Shown is the response of the post-synaptic Martinotti

cell where, at the lowest frequency of 20 Hz (figure 6 A top, with

the 20 Hz stimulation pattern), the burst is not strong enough to

cause M to become active. At 40 Hz (middle) the frequency is just

high enough to cause a single action potential at the end of the

stimulation burst. At 70 Hz, the Martinotti cell will become active

after only two input APs. This sensitivity to frequency and onset

latency of the facilitating synapse are well known properties of

short term facilitation experimentally [10]. Secondly, in panel B of

figure 6 (top) is shown a larger cortical microcircuit of two

pyramidal neurons P1 and P2 with a single inhibitory Martinotti

neuron M. In this situation all synapses are short term facilitating.

By stimulating the Martinotti cell M with a single burst of APs at

70 Hz (shown in panel B below the network), the two pyramidal

neurons show synaptic depression in experimental conditions [10].

Notice that the first two APs cause the second pyramidal neuron

P2 (blue) to be more depressed than the subsequent input APs.

This activity dependent synaptic depression is also caused by the

facilitating properties of the synapse as has been shown

experimentally. Lastly, in panel C of figure 6 is shown the full

microcircuit which is the same as in panel B but with a short term

depressing synapse between P1 and P2. The complete disynaptic

connection from P1 via the Martinotti cell M to P2 results in a

single AP followed by an IPSP in P2 due to stimulation of P1

experimentally [10]. P1 is stimulated with a single burst of APs at

40 Hz (panel C below the network), which causes the Martinotti

cell M to generate a single post-synaptic AP after several input

APs. The second pyramidal cell P2 shows EPSPs due to the input

from P1 but these are not sufficient to generate an AP. When M
becomes active, P2 shows a strong IPSP due to the input from M.

The activity from M will also cut short the burst from P1 which

then regenerates the burst just before stimulation ends.

The simulation results match excellently experimental results

describing both STD and STP in this microcircuit [10] which

validates both the experimental results and the STP model as

realistic representations of the mechanism of STP in cortical

microcircuits. Recent work on the intra-striatal microcircuit has

shown similar results for different dynamic interactions due to

plasticity modulations of different pathways [30].

Discussion

In pitch theory, different schemes for pitch estimation are used,

based on either pattern matching or autocorrelation. Both are

used to perform the basic operation of period estimation needed to

identify the pitch [31]. Short Term Plasticity can provide an

answer to this aspect as a mixture of the two methods. It selects

appropriate periods from frequency coded input (or characteristic

frequencies) as well as identifying the presence of relevant periods

in the network activity. This is particularly useful for high fidelity

information processing at high frequency to enable fine tuning to

which STP may well be suited [32]. Further properties of the

dynamic STP network, such as linear summation, contributes to

Figure 4. Phase and delay independence of the simple STD
model. Two separate simulations of two mutually inhibitory neurons
with STD where one simulation has zero phase difference (blue) in input
and one simulation has 65 ms phase difference (green) in input. The
emergent frequency, as shown by the read-out neuron V , remains the
same throughout any phase or delay difference.
doi:10.1371/journal.pone.0050189.g004

Table 1. Development of relative error of LCM period for
different integrators.

Integrator RK4 RK-Fehlberg

Stepsize (h) 0.01 0.001

Initial Relative Error e(x1) 9.361025 2.461025

Initial Relative Error e(x2) 3.761025 9.761024

Final Relative Error e(x1) 0 0

Final Relative Error e(x2) 0 0

The initial period in time has already a small relative error. This error disappears
completely over subsequent periods.
doi:10.1371/journal.pone.0050189.t001
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the determination of masking and efficient encoding within the

auditory system [18,33,34].

Sounds other than harmonic complexes may be perceived as

pitch, such as periodic and aperiodic click trains [5]. The STP

model would hold for these types of sounds because the perceived

pitch as the LCM of the combined inputs due to STD would still

emerge. In particular, emerging global pitch of an aperiodic input

in the presence of background noise would be conceivable as a

matched periodicity of temporally limited input within the random

background. Aspects such as the increased accuracy of pitch

discrimination over stimulus duration [5] can also be recognised

within the STD model, where events are matched as they occur

and improve their accuracy during a longer stimulus. Also, the

ability to match a pitch over noise filled gaps is conceivable, as

long as the matching events occur sufficiently often to maintain the

temporal LCM of the pitch. Noise would not disrupt the

perception as it would not cause a network response. Specific

constraints of the STP model for complex pitch simulations

remain to be defined and may form the basis of some more

interesting work.

The deterministic nature of the STP model makes it eminently

useful to study the basic computation that the STP mechanism

allows a mico-circuit to perform. That micro-circuits are capable

of such computation has long been suspected but never really

shown computationally. It is not possible to reproduce our results

with the STP model by Tsodyks et al. [13,14] as that model does

not include a mechanism for time shifts. The explicit time variable

in that model is not amenable to adjustment. The stochastic model

of perceived pitch [3] suffers from a limitation based on the nature

of randomness. The probability of a matching LCM period can

also be cancelled out with the probability of a non-matching

period, which is why the stochastic model occasionally misses a

period. It is also inherently inaccurate due to the presence of the

stochastic adaptation.

The consequences of the dynamic STP model go beyond the

auditory system. As has been shown by the frequency response

model of the chopper neurons, the excitatory and feed-forward

inhibitory synapses work synergistically as adaptive filters of spike

trains which has been shown for hippocampal synapses as well

[35]. This aspect takes STP to a more central role in accurate

information processing of complex neural spike patterns [36].

Increased accuracy, phase shifting, enhanced phase locking to

input, and selecting characteristic features from the spike pattern

are cardinal elements of the function of dynamic short term

plasticity within the synapse and neural networks.

Figure 5. Frequency response model with Short Term Depression. The network neural activity is selected from existing frequencies in the
compound input using characteristic activity of the onset neurons. A Scheme of a plausible microcircuit in the ventral cochlear nucleus. B Burst
activity of the receptor neuron R with compound input QFM (black). C Chopper neuron C1 activity resulting in an 1800 ms emergent frequency as
part of its unique pattern due to the characteristic frequency of O1 . D Chopper neuron C2 activity with 1800 ms activity pattern and unique activity
pattern due to O2 .
doi:10.1371/journal.pone.0050189.g005
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Methods

Dynamic Short Term Plasticity Model
The aim of the dynamic short term plasticity model is to define

a simple representation of synaptic plasticity that allows temporal

adjustments. This is achieved by using a dynamic systems

approach instead of a time constants methodology such as would

be the case with an alpha function [37]. In a manner similar to the

definition of an alpha function [37], the post-synaptic activity can

be approximated by two simple rate equations as follows.

d p

d t
~a q2zb p2 ð1Þ

d q

d t
~w q2zc I ð2Þ

where a~1 or a~2, b~{1, w is in the range ½{2,0w, c§1, I is

the external input, q the input variable and p represents the

synaptic activity. The synaptic strenght is simply represented by

the scalar c and is adjusted for appropriate input to the chosen

neural model. Short Term Plasticity can subsequently be

implemented using a resource based model suggested by Tsodyks

et al [13,14]. It is added to equations (1) and (2) by an additional

variable u as below.

d p

d t
~ a q2 z bp2 ð3Þ

d qdep

d t
~ w q2 z c (1 { u) f (DVpost { VpreD,h) ð4Þ

d qfac

d t
~w q2zc u f (DVpost{VpreD,h) ð5Þ

d u

d t
~l (1{u)p{k u ð6Þ

Figure 6. Short Term Plasticity in cortical layer 5 microcircuitry. A Short term facilitation of the pyramidal-Martinotti synapse, shown is the
activity of the Martinotti cell when the pyramidal cell is stimulated at 20 Hz, 40 Hz and 70 Hz. B Two pyramidal and one Martinotti neuron with STF,
the Martinotti neuron is stimulated at 70 Hz with adaptive post-synaptic IPSPs at neurons P1 (black) and P2 (blue). C Complete microcircuit with STF,
except the P1 to P2 synapse with STD. P1 is stimulated at 40 Hz which results in a single AP in M that terminates the stimulation burst in P1 and
causes a large IPSP in P2 .
doi:10.1371/journal.pone.0050189.g006

Figure 7. Scheme of the Simple Short Term Depression model.
A schematic diagram of two mutually inhibitory neurons with short
term depression X1 and X2. I1 and I2 are input neurons which receive
periodic input pulses. Neuron V is a virtual neuron which facilitates the
readout of neurons X1 and X2 and is not suggested to be biological
realistic as such.
doi:10.1371/journal.pone.0050189.g007
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where l~0:5 and k~0:01. The function f represents the relative

activities of the pre- and postsynaptic cell with threshold h. qdep (4)

is used to implement Short Term Depression and qfac (5) is used to

implement Short Term Facilitation, and are not used concurrent-

ly. The membrane potential terms are based on standard models

such as the Morris-Lecar [20], the Hindmarsh-Rose model [21],

the Fitzhugh-Nagumo [24] or the standard Hodgkin-Huxley

model [23]. A network consists of membrane potential models in

one or more compartments with additional synaptic connections

of the form of (3), (4) and (6) for STD and (3), (5) and (6) for STF.

Simple Short Term Depression Model
To study the effect of Short Term Depression, a simple network

of two mutually inhibitory neurons was constructed with two input

neurons and a read-out neuron. In figure 7 is shown the

microcircuit with the five model neurons. Input neurons I1 and

I1 receive periodic input pulses of fixed frequencies. These pulses

are presented to the input neurons as synaptic inputs using

equations (1) and (2) with appropriate synaptic scaling to ensure a

post-synaptic response in the input neurons. The synaptic inputs

are formed by a square input pulse with a period equal to the

chosen drive period. The two input neurons project onto

inhibitory neurons X1 and X2 which inhibit each other with short

term depression. Neuron V is a virtual neuron that compares the

behaviour of X1 and X1 with the input from I1 and I2. Neuron V
could be replaced by a more realistic network, such that additional

interneurons would provide the input, but this would make the

network needlessly complex. The model concerns the effect of

STD on the two mutually inhibitory neurons, and neuron V
simply facilitates the read-out of the emergent dynamics of

neurons X1 and X2. Parameter values are a~2, b~{1,

w~{0:5, and c~2.

Quasi Frequency Modulated Wave
To provide a realistic frequency encoded compound wave to the

model input neurons of the Frequency response model, a Quasi

Frequency Modulated wave (QFM) was constructed [27]. This

compound wave of one carrier frequency and one modulating

frequency has sufficient depth and complexity to form an input

neuron bursting pattern.

S(t)~ cos (2pfct)z 1
2

m( sin (2p(fczfm)t)

z sin (2p(fc{fm)t))
ð7Þ

where fc is the carrier frequency, fm modulation frequency and m
the modulation depth. The receptor neuron in figure 5 A receives

this wave as input, this results in a neural activity pattern of a time

modulated burst as shown in figure 5 B.

Author Contributions

Conceived and designed the experiments: TVOS AvO. Performed the

experiments: TVOS. Analyzed the data: TVOS. Contributed reagents/

materials/analysis tools: TVOS. Wrote the paper: TVOS HM AvO.

References

1. Manjarrez E, Balenzuela P, Garca-Ojalvo J, Vásquez EE, Martnez L, et al.

(2007) Phantom reflexes: muscle contractions at a frequency not physically

present in the input stimuli. BioSystems 90: 379–88.

2. Faisal A, Selen L, Wolpert D (2008) Noise in the nervous system. Nature reviews

Neuroscience 9: 292.

3. Chialvo DR (2003) How we hear what is not there: a neural mechanism for the

missing fundamental illusion. Chaos 13: 1226–1230.

4. Klapuri A (2006) Auditory model-based methods for multiple fundamental

frequency estimation. In: Klapuri A, Davy M, editors, Signal Processing

Methods for Music Transcription, Springer, Chapter 8. pp. 229–265. ISBN 0–

38–730667–6.

5. Balaguer-Ballester E, Clark N, Coath M, Krumbholz K, Denham S (2009)

Understanding pitch perception as a hierarchical process with top-down

modulation. PLoS Computational Biology 5: e1000301.

6. David SV, Mesgarani N, Fritz JB, Shamma Sa (2009) Rapid synaptic depression

explains nonlinear modulation of spectro-temporal tuning in primary auditory

cortex by natural stimuli. Journal of Neuroscience 29: 3374–86.

7. Cao XJ, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy

cells of the Mammalian ventral cochlear nucleus. Journal of neurophysiology 97:

3961–75.

8. Backoff PM, Palombi PS, Caspary DM (1997) Glycinergic and GABAergic

inputs affect short-term suppression in the cochlear nucleus. Hearing Research

110: 155–163.

9. MacLeod KM, Horiuchi TK, Carr CE (2007) A role for short-term synaptic

facilitation and depression in the processing of intensity information in the

auditory brain stem. Journal of Neurophysiology 97: 2863–74.

10. Silberberg G, Markram H (2007) Disynaptic inhibition between neocortical

pyramidal cells mediated by Martinotti cells. Neuron 53: 735–46.

11. von Gersdorff H, Borst JGG (2002) Short-term plasticity at the calyx of held.

Nature reviews Neuroscience 3: 53–64.

12. Boudreau CE, Ferster D (2005) Short-term depression in thalamocortical

synapses of cat primary visual cortex. Journal of Neuroscience 25: 7179–90.

13. Tsodyks M, Pawelzik K, Markram H (1998) Neural Networks with Dynamic

Synapses. Neural Computation 10: 821–835.

14. Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent

networks with frequency-dependent synapses. Journal of Neuroscience 20:

RC50.
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