3,155 research outputs found
Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21
Giant pulses are short, intense outbursts of radio emission with a power-law
intensity distribution that have been observed from the Crab Pulsar and PSR
B1937+21. We have undertaken a systematic study of giant pulses from PSR
B1937+21 using the Arecibo telescope at 430, 1420, and 2380 MHz. At 430 MHz,
interstellar scattering broadens giant pulses to durations of secs,
but at higher frequencies the pulses are very short, typically lasting only
-secs. At each frequency, giant pulses are emitted only in narrow
(\lsim10 \mus) windows of pulse phase located -sec after the
main and interpulse peaks. Although some pulse-to-pulse jitter in arrival times
is observed, the mean arrival phase appears stable; a timing analysis of the
giant pulses yields precision competitive with the best average profile timing
studies. We have measured the intensity distribution of the giant pulses,
confirming a roughly power-law distribution with approximate index of -1.8,
contributing \gsim0.1% to the total flux at each frequency. We also find that
the intensity of giant pulses falls off with a slightly steeper power of
frequency than the ordinary radio emission.Comment: 21 pages, 10 Postscript figures; LaTeX with aaspp4.sty and epsf.tex;
submitted to Ap
Variable Linear Polarization from Sagittarius A*: Evidence for a Hot Turbulent Accretion Flow
We report the discovery of variability in the linear polarization from the
Galactic Center black hole source, Sagittarius A*. New polarimetry obtained
with the Berkeley-Illinois-Maryland Association array at a wavelength of 1.3 mm
shows a position angle that differs by 28 +/- 5 degrees from observations 6
months prior and then remains stable for 15 months. This difference may be due
to a change in the source emission region on a scale of 10 Schwarzschild radii
or due to a change of 3 x 10^5 rad m^-2 in the rotation measure. We consider a
change in the source physics unlikely, however, since we see no corresponding
change in the total intensity or polarized intensity fraction. On the other
hand, turbulence in the accretion region at a radius ~ 10 to 1000 R_s could
readily account for the magnitude and time scale of the position angle change.Comment: accepted for publication in ApJ
Nematic cells with defect-patterned alignment layers
Using Monte Carlo simulations of the Lebwohl--Lasher model we study the
director ordering in a nematic cell where the top and bottom surfaces are
patterned with a lattice of point topological defects of lattice
spacing . We find that the nematic order depends crucially on the ratio of
the height of the cell to . When the system is very
well--ordered and the frustration induced by the lattice of defects is relieved
by a network of half--integer defect lines which emerge from the point defects
and hug the top and bottom surfaces of the cell. When the
system is disordered and the half--integer defect lines thread through the cell
joining point defects on the top and bottom surfaces. We present a simple
physical argument in terms of the length of the defect lines to explain these
results. To facilitate eventual comparison with experimental systems we also
simulate optical textures and study the switching behavior in the presence of
an electric field
Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries
We calculate the expected nHz--Hz gravitational wave (GW) spectrum from
coalescing Massive Black Hole (MBH) binaries resulting from mergers of their
host galaxies. We consider detection of this spectrum by precision pulsar
timing and a future Pulsar Timing Array. The spectrum depends on the merger
rate of massive galaxies, the demographics of MBHs at low and high redshift,
and the dynamics of MBH binaries. We apply recent theoretical and observational
work on all of these fronts. The spectrum has a characteristic strain
, just below the detection limit from
recent analysis of precision pulsar timing measurements. However, the amplitude
of the spectrum is still very uncertain owing to approximations in the
theoretical formulation of the model, to our lack of knowledge of the merger
rate and MBH population at high redshift, and to the dynamical problem of
removing enough angular momentum from the MBH binary to reach a GW-dominated
regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio
Green Bank Telescope Observations of the Eclipse of Pulsar "A" in the Double Pulsar Binary PSR J0737-3039
We report on the first Green Bank Telescope observations at 427, 820 and 1400
MHz of the newly discovered, highly inclined and relativistic double pulsar
binary. We focus on the brief eclipse of PSR J0737-3039A, the faster pulsar,
when it passes behind PSR J0737-3039B. We measure a frequency-averaged eclipse
duration of 26.6 +/- 0.6 s, or 0.00301 +/- 0.00008 in orbital phase. The
eclipse duration is found to be significantly dependent on radio frequency,
with eclipses longer at lower frequencies. Specifically, eclipse duration is
well fit by a linear function having slope (-4.52 +/- 0.03) x 10^{-7}
orbits/MHz. We also detect significant asymmetry in the eclipse. Eclipse
ingress takes 3.51 +/- 0.99 times longer than egress, independent of radio
frequency. Additionally, the eclipse lasts (40 +/- 7) x 10^{-5} in orbital
phase longer after conjunction, also independent of frequency. We detect
significant emission from the pulsar on short time scales during eclipse in
some orbits. We discuss these results in the context of a model in which the
eclipsing material is a shock-heated plasma layer within the slower PSR
J0737-3039B's light cylinder, where the relativistic pressure of the faster
pulsar's wind confines the magnetosphere of the slower pulsar.Comment: 12 pages, 3 figure
The level of specialist assessment of adult asthma is influenced by patient age
SummaryBackgroundLate onset asthma is associated with more severe disease and higher morbidity than in younger asthma patients. This may in part relate to under recognition of asthma in older adults, but evidence on the impact of patient age on diagnostic assessment of asthma in a specialist setting is sparse.AimTo examine the impact of patient age on the type and proportion of diagnostic tests performed in patients undergoing specialist assessment for asthma.MethodsData from a clinical population consisting of all patients consecutively referred over a 12 months period to a specialist clinic for assessment of asthma were analysed.ResultsA total of 224 patients with asthma or suspected asthma were referred during the 12 month period; 86 adults aged <35 years, 95 aged 35–55 years and 43 aged >55 years. Symptom characteristics were similar, but adults >35 years had a lower lung function than younger adults, and were more frequently smokers. However, a regression analysis showed that older age was associated with a lower likelihood of diagnostic assessment with a reversibility test, a bronchial challenge test, or measurement of exhaled NO, independently of a known diagnosis of asthma, smoking habits and lung function at referral.ConclusionA lower level of diagnostic assessment was observed already after the age of 35 years, indicating a risk for under diagnosis of asthma at an earlier patient age than previously thought
- …