3,677 research outputs found
Green Bank Telescope Observations of the Eclipse of Pulsar "A" in the Double Pulsar Binary PSR J0737-3039
We report on the first Green Bank Telescope observations at 427, 820 and 1400
MHz of the newly discovered, highly inclined and relativistic double pulsar
binary. We focus on the brief eclipse of PSR J0737-3039A, the faster pulsar,
when it passes behind PSR J0737-3039B. We measure a frequency-averaged eclipse
duration of 26.6 +/- 0.6 s, or 0.00301 +/- 0.00008 in orbital phase. The
eclipse duration is found to be significantly dependent on radio frequency,
with eclipses longer at lower frequencies. Specifically, eclipse duration is
well fit by a linear function having slope (-4.52 +/- 0.03) x 10^{-7}
orbits/MHz. We also detect significant asymmetry in the eclipse. Eclipse
ingress takes 3.51 +/- 0.99 times longer than egress, independent of radio
frequency. Additionally, the eclipse lasts (40 +/- 7) x 10^{-5} in orbital
phase longer after conjunction, also independent of frequency. We detect
significant emission from the pulsar on short time scales during eclipse in
some orbits. We discuss these results in the context of a model in which the
eclipsing material is a shock-heated plasma layer within the slower PSR
J0737-3039B's light cylinder, where the relativistic pressure of the faster
pulsar's wind confines the magnetosphere of the slower pulsar.Comment: 12 pages, 3 figure
New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches
We discuss four recycled pulsars found in Arecibo drift-scan searches. PSR
J1944+0907 has a spin period of 5.2 ms and is isolated. The 5.8-ms pulsar
J1453+19 may have a low-mass companion. We discuss these pulsars in the context
of isolated millisecond pulsar formation and the minimum spin period of neutron
stars. The isolated 56-ms pulsar J0609+2130 is possibly the remnant of a
disrupted double neutron star binary. The 41-ms pulsar J1829+2456 is in a
relativistic orbit. Its companion is most likely another neutron star, making
this the eighth known double neutron star binary system.Comment: 6 pages, 3 figures, to appear in proceedings of Aspen Center for
Physics Conference on ``Binary Radio Pulsars'' Eds. F. Rasio and I. Stair
Settlement of Macoma balthica larvae in response to benthic diatom films
The role of multi-species benthic diatom films (BDF) in the settlement of late pediveliger larvae of the bivalve Macoma balthica was investigated in still-water bioassays and multiple choice flume experiments. Axenic diatom cultures that were isolated from a tidal mudflat inhabited by M. balthica were selected to develop BDF sediment treatments characterized by a different community structure, biomass, and amount of extracellular polymeric substances (EPS). Control sediments had no added diatoms. Although all larvae settled and initiated burrowing within the first minute after their addition in still water, regardless of treatment, only 48-52% had completely penetrated the high diatom biomass treatments after 5 min, while on average 80 and 69% of the larvae had settled and burrowed into the control sediments and BDF with a low diatom biomass (<3.5 mu g Chl a g(-1) dry sediment), respectively. The percentage of larvae settling and burrowing into the sediment was negatively correlated with the concentration of Chl a and EPS of the BDF. This suggests higher physical resistance to bivalve penetration by the BDF with higher diatom biomass and more associated sugar and protein compounds. The larval settlement rate in annular flume experiments at flow velocities of 5 and 15 cm s(-1) was distinctly lower compared to the still-water assays. Only 4.6-5.8% of the larvae were recovered from BDF and control sediments after 3 h. Nonetheless, a clear settlement preference was observed for BDF in the flume experiments; i.e., larvae settled significantly more in BDF compared to control sediments irrespective of flow speed. Comparison with the settlement of polystyrene mimics and freeze-killed larvae led to the conclusion that active selection, active secondary dispersal and, at low flow velocities (5 cm s(-1)), passive adhesion to the sediment are important mechanisms determining the settlement of M. balthica larvae in estuarine biofilms
Size of the Vela Pulsar's Emission Region at 13 cm Wavelength
We present measurements of the size of the Vela pulsar in 3 gates across the
pulse, from observations of the distribution of intensity. We calculate the
effects on this distribution of noise in the observing system, and measure and
remove it using observations of a strong continuum source. We also calculate
and remove the expected effects of averaging in time and frequency. We find
that effects of variations in pulsar flux density and instrumental gain,
self-noise, and one-bit digitization are undetectably small. Effects of
normalization of the correlation are detectable, but do not affect the fitted
size. The size of the pulsar declines from 440 +/- 90 km (FWHM of best-fitting
Gaussian distribution) to less than 200 km across the pulse. We discuss
implications of this size for theories of pulsar emission.Comment: 51 pages, 10 figures. To appear in ApJ. Also available at
http://www.physics.ucsb.edu/~cgwinn/pulsar/size_14.p
PSR J0609+2130: A disrupted binary pulsar?
We report the discovery and initial timing observations of a 55.7-ms pulsar,
J0609+2130, found during a 430-MHz drift-scan survey with the Arecibo radio
telescope. With a spin-down rate of s s and an
inferred surface dipole magnetic field of only G,
J0609+2130 has very similar spin parameters to the isolated pulsar J2235+1506
found by Camilo, Nice & Taylor (1993). While the origin of these weakly
magnetized isolated neutron stars is not fully understood, one intriguing
possibility is that they are the remains of high-mass X-ray binary systems
which were disrupted by the supernova explosion of the secondary star.Comment: 5 pages, 2 figures, accepted for publication in MNRAS (letters
- …